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Abstract— Traditionally, optical-based positioning has been 

an area that attracted high interest for specialised application 

such as robotic navigation. With the recent development and 

integration of cameras in mobile devices, optical positioning is 

gaining further interest in indoor positioning application for 

human navigation. Furthermore, the release of Google Tango has 

attracted the interest of several researchers for improving 

optical-based positioning using 3D mapping. However, estimating 

3D pose based on PnP problem has been a challenge which 

affects the positioning accuracy. This paper proposes two novel 

strategies to improve PnP solution algorithms, and hence 

accuracy. The first “scaling” strategy, is based on minimising 

model size, with the second, “sub-model” strategy, involving 

selection of only the related area of the model to be used. The 

proposed strategies also have the advantage of limiting the error 

to the set scale size. The scale and sub-model strategies showed an 

average improvement of 1.61 and 3.33 m, respectively. 
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I.  INTRODUCTION 

Location-based services (LBS) are widely used today. Most 
of them depend on Global Navigation Satellite Systems 
(GNSS) to provide accurate and reliable positioning. However, 
such positioning techniques cannot be supported in indoor 
environments, where the satellite signal is often blocked by 
walls and ceilings [1]. Accordingly, numerous technologies, 
such as RF, ultrasonic, optical, and infrared IR, have been used 
to detect users’ indoor locations with convincing results. 

Optical-based positioning is effective, as it require no 
additional infrastructure, such as beacons and access points [2]. 
Whilst many studies have focused on mobile robot navigation 
[2], such as [3][4] and [5], more recently there has been 
increased interest in human optical positioning, such as in 
[6][7] and [8], as smartphones have become more common. 

The release of Google’s Project Tango has further increased 
interest in optical-based positioning, particularly using 3D 
maps, such as [9][10] and [11]. Compare to normal vision 
sensors embedded in mobile phones, Project Tango brings a 
new spatial visualisation and localisation, by updating 
advanced computer vision and locomotion, and embedding a 
depth sensor within mobile devices [12].  

Generally, optical positioning based on cameras is 
determined by comparing images with corresponding, pre-
recorded images. The latter are found by searching similar 
images to the image captured at the current position. Optical 
positioning can also be used with a 3D map, which often 
employs 6-DOF localisation. The 3D map consists of 3D-point 
clouds, and is created using 3D sensors such as Microsoft 
Kinect, a stereo camera or the Project Tango device. An image-
matching algorithm searches similarities between query images 
and the map. Once the corresponding image is found, a 
Perspective-n-Point (PnP) problem is solved, in order to 
determine the camera pose. 

One major challenge of 3D visual indoor positioning is 
finding an optimal solution to solve the PnP problem. Existing 
solutions can be divided into two categories: iterative and 
direct [13]. Whilst the former are more accurate than the latter, 
they tend to have higher computing costs and are slower to 
compute [14]. This may be problematic for devices with 
limited computing capabilities, such as smartphones. As a less 
computing costs and faster computing solution, direct solutions 
use subsets of n points in calculations. For example, [15] 
introduced a new non-iterative solution to the PnP problem, 
utilising n 3D points as a weighted sum of four virtual control 
points. The problem is then simplified to just estimating the 
coordinates of these control points in the camera referential. 

In this paper, in order to eliminate the problem of large 
model size and to lower computational complexity, we 
proposed two novel strategies to improve PnP without directly 
modifying the PnP algorithm. These two optimisation 
algorithms attempt to address this problem by reducing the 
room model size, or limiting the area worked on. The first 
strategy is based on direct solutions that scale down a large-
sized model, in order to tackle the PnP problem more 
conveniently. The other strategy selects the related portion of 
the whole model to be computed, instead of processing the 
entire testing area, and is an efficient way to reduce 
computational complexity. 

II. PERSEPTIVE-N-POINT 

PnP is defined as the problem to estimate the 3D pose or 
the 6 degree-of-freedom (DOF), given the 3D location features 
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and their corresponding 2D image. [16] derived PnP as finding 
the length of the line segments that join the centre of 
perspective (camera origin point) to each of the control points 
(features in 2D image), given that the relative spatial location 
of n control points, and the angle of every pair control points to 
the centre of perspective, is known. 

The PnP problem with n=1 or n=2 does not provide 
constraining information, thus an infinite number of solutions 
are possible for these conditions. For PnP problem with n=3, 
three lengths of tetrahedron are formed by the three points a, b, 
c and the centre of perspective. [16] states that the solution to 
this problem is implied by: 

(𝑅𝑎𝑏)2 =  𝑎2 + 𝑏2 − 2 ∗ 𝑎 ∗ 𝑏[cos(𝜃𝑎𝑏)]  (1) 

(𝑅𝑎𝑐)2 =  𝑎2 + 𝑐2 − 2 ∗ 𝑎 ∗ 𝑐[cos(𝜃𝑎𝑐)]  (2) 

(𝑅𝑏𝑐)2 =  𝑏2 + 𝑐2 − 2 ∗ 𝑏 ∗ 𝑐[cos(𝜃𝑏𝑐)]  (3) 

As there is no global optimal solution which is accurate and 
applicable to any problem with n > 3, a variety of solutions 
have been proposed for the PnP problem, such as [17], [18] or 
a more recent [19]. These solutions vary, with some focusing 
on specific point configurations, whilst others tackle a more 
general case. 

III. PROPOSED STRATEGIES FOR PNP IMPROVEMENT 

Two strategies are proposed to improve PnP results. These 
may improve PnP without actually modifying the PnP 
algorithm. Errors of 3D pose detection increase with room 
model size. The proposed strategies endeavour to counter this 
problem by reducing room model size, or limiting the area 
worked on. 

A. Scale Strategy 

This strategy uses a direct approach to tackle a large sized 
model by scaling it down. A specific size limit is set as the 
default value for the scale size. Currently, 3 m is chosen as the 
scale size, as this is about the width of a small office room. 
Ideally, the aim is to limit the error to within the scale size. 

This strategy is performed by taking the model’s largest 
dimension value, typically the length, and dividing it by 3. This 
value will be the scale ratio for this specific model’s scale 
process. The model’s other dimension size is then scaled down 
based on the calculated scale ratio. For example, a model with 
the dimension of 10 x 3 m will have a scale ratio of 1:3.33. 
Scaling down the model using this ratio produces a model of 3 
x 0.9 m. 

All point clouds’ coordinates for the model are also scaled 
down, using the same scale ratio as for the entire model, and 
the information contained within it. The PnP algorithm is then 
performed as usual, using the new scaled-down model point 
clouds as the inputs. 

B. Sub-model Strategy 

This strategy attempts to minimise the area to be worked 
on. Out of the original model area, only a portion of the model 
is related to the positioning process. This strategy focuses only 
on the area which is useful for the positioning process. This is 
performed by creating a sub-model and ideally, the positioning 
process will only focus on the new sub-model area.  

The sub-model is assigned based on the result of a 2D-to-
3D correspondences algorithm. When an image is captured for 
positioning, it is compared with the database. The 2D-to-3D 
correspondences are calculated, and will provide 3D 
correspondences which show the parts of the model that are 
being used as the reference. This is the area which will be used 
as the sub-model. 

The steps to assign the sub-model are executed by initially 
determining the 3D correspondences of the captured image. 
Then, the centre point of the 3D correspondences are 
calculated. All 3D correspondence points are then deducted 
with the value of the centre points. The idea behind this step is 
to move the model’s origin point to the centre of the 3D 
correspondences. This creates a smaller model, or a sub-model. 
The PnP is then calculated using the new 3D correspondence 
values. Finally, the centre point is added back to the result 
point, to return it to the position within the actual model. 

 

 
Fig. 1  Noreen and Kenneth Murray Library floor plan 
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IV. IMPLEMENTATION 

The strategies are implemented and tested in the Noreen 
and Kenneth Murray Library in Kings Building, University of 
Edinburgh. The model and database are built and created using 

Google’s Tango Tablet. An RGBDSLAM algorithm is used to 
create the model and database for this implementation.  

Positioning is performed using the same device, but with a 
single camera. Six test points are taken and in each, three 
images are captured, each with a different image. The images 
are then processed using a standard algorithm, scale strategy 
and sub-model strategy. The feature-matching algorithm used 
in this test is the Brute Force matcher. This was found to be 
adequate for the purpose of this paper as this is the basic 
feature-matching algorithm with a good detection rate. The 
PnP solution used for this implementation is an iterative 
method based on Levenberg-Marquardt optimisation. 

V. RESULTS 

As this paper focuses on the difference made by the 
proposed strategies, any errors due to mismatched images are 
left out. This way, the only modifiers that can affect the results 
are the proposed strategies.  

Fig. 1 shows the Noreen and Kenneth Murray Library floor 
plan and the six test points’ locations. The floor plan is divided 
into three areas to minimise mismatching. Blue dots indicate 
the starting point of the corresponding area. The results for test 
points 1, 3 and 6 will be shown individually, followed by 
overall results for the entire six test points.  

Fig. 2 shows the results for test point 1. The numbered red 
marker indicates the actual test point location. The red pins 
signal use of the standard algorithm, yellow pins indicate the 
scale strategy and green pins the sub-model strategy. The 
results clearly show the accuracy of the three strategies used 
for this test point. The standard algorithm results scattered 
further away from the actual test point, whilst the scale strategy 
results shows improvement compared to the standard 
algorithm. The sub-model strategy showed the best results, 
which lay in close proximity to the actual test point. Table 1 
displays the errors for all strategies used for test point 1. The 
mean error for the scale strategy was well within the scale size 
set during the scaling down process. The sub-model strategy 
shows a significant improvement, with only a 0.60 m mean 
error. 

Fig. 3 shows the results for test point 3. Almost all results 
clustered in proximity to the actual test point. Nevertheless, the 
sub-model strategy still showed better results, although the 
scale strategy was slightly less accurate than the standard 
algorithm as shown in Table 2. Despite this, results were all 
still well within the scale size set at 3 m. Notice the distance 
between test points 1 and 3 compared to the area origin point. 
The closer the test point is to the origin point, the more likely 
results tend to be more accurate. This is the error that the sub-
model tries to tackle and improve. 

TABLE 1. RESULTS FOR TEST POINT 1 

Strategy Error (m) Mean Error (m) 

Standard 

1 2.60 

4.72 2 6.24 

3 5.33 

Scale 

1 2.57 

2.58 2 3.85 

3 1.33 

Sub-model 

1 0.57 

0.60 2 0.36 

3 0.88 

 

 

Fig. 2  Visual result of test point 1 
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Table 3 shows the overall test results. In most tests, the 
scale strategy was able to improve results compared to the 
standard algorithm. It attempts to limit errors within the scale 
size but in some cases, it does have errors larger than this size. 
The sub-model, however, managed to improve results in all test 
points. It had an accuracy to within 1 m for all test points 
except test point 6. On average, the sub-model strategy 
improved the standard algorithm by 3.33 m, whilst the scale 
strategy improved accuracy by 1.61 m. 

VI. CONCLUSION 

 This paper has presented two new strategies to be used in 
conjunction with PnP algorithms. The proposed strategies 
tackle the problem of large model size. In doing so, they also 
limit the error within the set scale size. 

The proposed strategies were implemented and compared 
to the same PnP algorithm but without the proposed strategies. 
The results showed a significant improvement to the standard 
implementation of PnP, with an average improvement of 1.61 
m for the scale strategy and 3.33 m for the sub-model strategy. 

The best improvement can be seen in conditions where the 
camera position is further away from the model’s origin point, 
where the positioning error is more obvious, as in the example 
of test point 1. 
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