

High Performance Monte-Carlo Based Option Pricing on FPGAs
Xiang Tian, Khaled Benkrid, and Xiaochen Gu

The University of Edinburgh, School of Electronics and Engineering,
Mayfield Road, Edinburgh EH9 3JL, Scotland, UK

(x.tian,k.benkrid,x.gu)@ed.ac.uk

Abstract—High performance computing is becoming
increasingly important in the field of financial computing,
as the complexity of financial models continues to increase.
Many of these financial models do not have a practical
close form solution in which case numerical methods are
the only alternative. Monte-Carlo simulation is one of
most commonly used numerical methods, in scientific
computing in general, with huge computation benefits in
solving problems where close form solutions are
impossible to derive. As the Monte-Carlo method relies on
the average result of thousands of independent stochastic
paths, massive parallelism can be adopted to accelerate the
computation. Computer clusters with off-the-shelf
accelerator hardware are increasingly being proposed as
an economic high performance implementation platform
for many scientific computing applications. This paper is
part of this trend as it presents an implementation of a
Monte-Carlo simulation engine for option pricing on an
FPGA-based supercomputer, called Maxwell, developed at
the University of Edinburgh. The latter consists of a 32
CPU cluster augmented with 64 Virtex-4 Xilinx FPGAs
connected in a 2D torus. Our engine can implement
various Monte-Carlo simulations on the Maxwell machine
with speed-ups in excess of 100x compared to equivalent
software implementations. This is illustrated in this paper
in the context of an implementation of the GARCH option
pricing model. Real hardware implementation shows that
our FPGA-based implementation of the GARCH model
outperforms an equivalent software implementation
running on a workstation cluster with the same number of
computing nodes (CPU/FPGA) by a factor of 340.

Index Terms—Financial computing, High performance

computing, Monte-Carlo simulation, FPGA

I. Introduction

High performance computing is of great importance in
the field of finance when it comes to solving problems
which are defined on models of financial variables.
Many of these problems, however, cannot be solved
with an analytical solution because of the large number
of coupled degrees of freedom in these problems. In
these instances, a numerical computational technique
called the Monte-Carlo method is often used. The latter
relies on repeated random sampling of model equations
in order to compute their solutions. It is a technique that
is widely used in physical chemistry, computational
physics, and related applied fields. Monte-Carlo
simulations are also used to forecast a wide range of
events and scenarios, such as the weather, product sales
and consumer demand. For instance, Figure 1 depicts

forecasts for electricity demand in a geographical area
based on historical data, using Monte-Carlo simulation.

Figure 1. Future demand for electricity in a city

(http://www.electricitycommission.govt.nz/opdev/modelling/demand/
natforecast)

In financial computing, the Monte-Carlo technique
is used to simulate the various sources of uncertainty
that affect the value of the instrument, portfolio or
investment in question. Many financial computing
applications have no close form solutions, as they
depend on three or more stochastic variables. Here,
Monte-Carlo simulation tends to be numerically more
efficient than other procedures [1] . This is because the
computational time of Monte-Carlo simulations
increases approximately linearly with the number of
variables, whereas in most other methods,
computational time increases exponentially with the
number of variables. One of the important
characteristics of Monte-Carlo simulation is parallelism
as multiple independent paths are computed. Hence,
massive parallelism can be adopted to accelerate the
simulation. This paper presents an implementation of
Generalized Autoregressive Conditional
Heteroskedastic (GARCH) option pricing model, using
Monte-Carlo simulation, on a FPGA supercomputer
called Maxwell. Our FPGA-based Monte-Carlo
simulation engine benefits from the maximum possible
parallelism with the added advantages of
reprogrammability and relative low power.

Compared to previous work, this paper presents the
fastest FPGA implementation of a Monte-Carlo based
simulation of option pricing, ever reported in the
literature. It also presents a complete design and

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

implementation of a generic Monte-Carlo based
simulation engine on an FPGA supercomputer.

The remainder of this paper is organized as follows.
First, section 2 presents background information on
options, the evolution of stock prices, the GARCH
model, and Monte-Carlo based simulation of option
pricing. Section 3 then reports previous hardware
implementations of Monte-Carlo option pricing
simulation. After that, our own hardware
implementation is presented in detail, in section 4,
including the implementation details of a random
number generator using the Box-Muller method, a
stochastic volatility computing module, as well the
system design details of a complete Monte-Carlo based
engine for option pricing. The implementation results
on the Maxwell FPGA supercomputer are then
presented in section 5. The latter will include
information about the Maxwell machine architecture,
message passing interface, and front-end software
design. A comparison of our hardware implementation
results with our own equivalent software
implementations as well as other implementations
reported in the literature is then presented in section 6.
Finally, conclusions and plans for future work are
drawn.

II. Background

In this section, we will present basic background
material related of relevance to the rest of this paper,
including concept of options, the behaviour of stock
prices, the GARCH model of stock evolution, and the
mathematical underpinnings of Monte-Carlo based
simulation of option prices.

A. Concept of Options
Options are traded both on stock exchanges and on

over-the-counter markets. There are two basic types of
options [1] : a call option which gives the holder the
right to buy the underlying asset by a certain date for a
certain price, and a put option which gives the holder
the right to sell the underlying asset by a certain date for
a certain price. The price in the contract is known as the
exercise price or strike price, and the date in the
contract is known as the expiration date or maturity.
Within these types, we also distinguish between two
main types of options: American options which are call
or put options that can be exercised at any time up to
the expiration date, and European options which can be
exercised only on the expiration date itself. There are
also Asian options on the market which differ from
European and American options in that their strike price
is the average price of the asset over a period of time,
computed by collecting the daily closing price over the
life of the option. In this paper, we focus mainly on
European options.

B. Evolution of Stock Prices
Since options are traded on the stock market, their

value/price changes according to offer and demand. If S
is the stock price at time t, the expected drift rate in S
should be assumed to be μS for a constant parameter of
μ. This means that in a short interval of time, given as δt,
the expected increase in S is μSδt. The parameter μ is
the expected rate of return on the stock, expressed in
decimal form. If the volatility of the stock price is
always zero, this model implies that:

Eq 1. tSS δμδ =

In the limit as δt 0,
Eq 2. SdtdS μ=

Or
Eq 3. dt

S
dS μ=

In practice, a stock price does exhibit volatility
however. A reasonable assumption is that the variability
of the percentage return in a short period of time (δt) is
the same regardless of the stock price. This suggests
that the standard deviation of the change, in interval δt,
should be proportional to the stock price, which leads to
the following model:

Eq 4. SdzSdtdS σμ +=

Or

Eq 5. dzdt
S

dS σμ +=

where variable σ is the volatility of the stock price, and
variable μ is its expected rate of return. The discrete-
time version of the model is:

Eq 6. ztS σδμδδ +=

The variable δS is the change in the stock price S in
a small time interval δt, and δz is a random number
drawn from a standardized normal (Gaussian)
distribution. The parameter μ is the expected rate of
return per unit of time from the stock, and the parameter
σ is the volatility of the stock price per unit of time. By
importing Ito’s lemma [1] to derive the process
followed by G, defined as:

Eq 7. SG ln=
we obtain:

Eq 8. dzdtdG σσμ +−=)
2

(
2

Here, dz is a Wiener process which is related to dt
by the following equation:

Eq 9. dtdz ε=
ε is a random variable with a normal (Gaussian)

distribution with a mean of zero and a standard
deviation of 1.0. Rewriting Eq 8 with the relationship in
Eq 9, we get:

Eq 10. dtdtdG σεσμ +−=)
2

(
2

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

This model is also called the Black-Scholes option
pricing model [2] .

C. Stochastic Volatility
One assumption in the Black-Scholes model that is

not always true in practice is the assumption that
volatility is constant. Indeed, practitioners often find it
necessary to change the volatility parameter when using
the Black-Scholes model to value options. In the case
where the stock price and volatility are correlated, there
is no simple solution to the model equations and Monte-
Carlo based simulations often become necessary.

One technique for modeling volatility that has
become popular is GARCH model [3] . The most
commonly used GARCH model is GARCH (1, 1)
where the volatility is given by the following equation:
Eq 11. 22

1
2

10
2 λβσασσσ −− ++= iii

Here α, and β are constants which can be estimated
from historical data using maximum likelihood methods.
σ0 is the volatility of the stock price at time 0, σi and σi-1
are the volatilities at time iΔt and (i-1)Δt. λ is a random
variable with a normal (Gaussian) distribution with a
mean of zero and a standard deviation of 1.0. Notice
that the random variable in the GARCH model is
different from the one used in the describing the
evolution of stock prices. The two random variables
represent two independent stochastic processes.

For options that last less than a year, the pricing
impact of a stochastic volatility is fairly small in
absolute terms. It becomes progressively larger as the
life of the option increases.

D. Monte-Carlo Simulation
Monte-Carlo simulation of a stochastic process like

the one depicted in Eq 8 is a procedure for sampling
random outcomes of that process, associating an event
(e.g. a particular variability of the stock) with a set of
outcomes (e.g. a particular strike price at time t) and
defining the probability of the event to be its volume or
measure relative to that of a universe of possible
outcomes. Monte-Carlo simulation tends to be
numerically more efficient than other procedures when
there are many stochastic variables. Figure 2 gives the
evolution of a stock’s price in time, for 50 different
random paths.

Figure 2. 50 paths of stock price evolution

III. High Performance Monte-Carlo based
Financial Computing

Initially, financial computing did not benefit greatly
from developments in high performance computing, as
the latter aimed mainly at engineering and weapon
design applications. Besides, financial experts were
initially focusing on developing mathematical models
and computer simulations in order to comprehend the
behaviour of financial markets and develop risk-
management tools. As this effort progressed, the
complexity of financial computing applications grew up
rapidly. Indeed, as the number of stochastic parameters
involved in financial models increased, close form
solutions became impractical to derive, and hence
Monte-Carlo based sampling methods became an
attractive alternative. As a result, parallel computing
systems offered a distinctive advantage and were
subsequently introduced into the realm of financial
computing.

In [4] , a survey of high performance computing
systems and computer-aided design tools for financial
computing was presented. Figure 3 illustrates the
processing time needed to derive the state dependent
pricing of a portfolio of mortgage backed securities on a
number of computing platforms. This shows that
simulations that would take several hours on
workstations could be completed within few minutes on
a CRAY X-MP supercomputer and within less than a
minute on a massively parallel system.

Figure 3. State dependent pricing of a portfolio of mortgage backed
securities on a variety of workstations, supercomputer CRAY X-MP,
a workstations cluster, and a massively parallel Connection Machine

CM-2a (Source: [4])

The cost of cluster computers and supercomputers
can, however, be prohibitive. Area and power
consumption can also be a major disadvantage of these
computing platforms. For these reasons, alternative
platforms are being considered. Field Programmable
Gate Arrays (FPGAs), for instance, offer the high
performance of a dedicated hardware solution of a
particular algorithm, with a fraction of the area and
power consumption of equivalent microprocessor-based
solutions. Moreover, the continuous developments in
transistor integration levels mean that it is now possible
to implement a considerable number of floating-point
arithmetic units on modern FPGAs. If this trend is to
continue, FPGA use is set to conquer new application
domains, including financial computing. The following

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

presents a number of recent FPGA-based financial
computing application implementations.

In [5] , an FPGA-based Monte-Carlo simulation
core used for computing the BGM (Brace, Gatarek and
Musiela) interest rate model for pricing derivatives was
presented. The BGM interest rate model is commonly
used to simulate the fluctuation of interest rates over
time, something which has an influence on nearly all
economic activity. Results show that around 25 times
speed-up can be obtained by using an FPGA, compared
to an equivalent Pentium IV 1.5GHz based software
implementation. Other hardware architectures for
Monte-Carlo based financial simulations were
published in [6] . In this paper, five different Monte-
Carlo option pricing simulation algorithms were
explored, including log-normal price movements,
correlated asset Value-at-Risk calculation, and price
movements under the GARCH model. Using a Xilinx
Virtex-4 XC4VSX55 device, implementation results
show that FPGA implementations run on-average 80
times faster than equivalent software ones (running on a
2.66GHz PC).

Figure 4. Single node performance of Asian option pricing

simulation on the Maxwell machine [7]

The combination of cluster technology and
reconfigurable hardware acceleration is a relatively new
development in high performance computing, which
promises to combine the relatively high performance
and low power consumption of reconfigurable hardware
with established design flows and consequent
knowledge base in traditional microprocessor based
high performance computing. Maxwell, a
supercomputer with 64 FPGA nodes, is a relatively
recent development in this direction [7] . A simple
Asian option pricing core was designed as a
demonstration application on Maxwell. As mentioned
above, Asian options are a special type of options where
the strike price is the average price of the asset over a
period of time, computed by collecting the daily closing
price over the life of the option. The implementation
results of this demonstrator application are shown is
Figure 4 (AlphaData and Nallatech are the two FPGA
companies that donated the FPGA accelerator nodes on
the Maxwell machine, 32 each). The results show that
the AlphaData nodes lead to ~320-time speed-up

compared to an equivalent software implementation,
whereas the Nallatech nodes lead to a 109-time speed-
up. The discrepancy is due to the design language/flow
used for each node type: VHDL for AlphaData and a
proprietary C-based hardware language, called DIME-C,
for Nallatech.

IV. Our Hardware Architecture of a Monte-
Carlo Simulation Engine

Monte-Carlo simulation relies on stochastic sampling,
and as such random number generation is a key part of
it. Software implementations of random number
generators are relatively slow, that is why a hardware
implementation is required. However, while software
implementations are abundant, hardware ones are
relatively few. In the option pricing equations presented
in section II above, a Gaussian random number
generator is required. In this paper, we use the Box-
Muller method for the hardware generation of Gaussian
random numbers [8] .

The hardware architecture of our Monte-Carlo
simulation engine is shown in Figure 5. In it, N Monte-
Carlo computing cores run in parallel to generate N
different paths at the same time. Therefore, the total
number of paths that each core has to compute is equal
to the total number of paths required divided by N. In
the end, results from each core e.g. average option price
over N paths, are collected by the host (in software).
The latter will perform high level operations on these
results e.g. averaging the intermediate results to
calculate the most probable strike price.

Wrapper
MC_TOP

MC Core MC Core

PC
I-

X

Processor

Box-Muller
Random
Number

Generator

Monte-Carlo
Iteration Core

Post Processing

G
aussian
N

oise
Stock
Price

O
ption

Price O
ut

pu
t

en
ab

le
O

ut
pu

t
en

ab
le

MC Core MC Core

}

}

N Cores

MC Core

GARCH
Module

Gaussian Noise

q

w

Figure 5. Generic architecture of a Monte-Carlo simulation engine

Each computing core comprises the following
components: (a) one Box-Muller random number
generator, (b) a simulation core that provides
computational resources for iteration, (c) a stochastic
volatility computing module based on the GARCH
model, and (d) a post processing module e.g. for
averaging intermediate option prices.

The following sub-sections describe the detailed
design of each module presented in Figure 5. Before
that, however, we note that we have decided to use
fixed-point arithmetic to implement all of these units
after performing a range analysis in MALAB to decide
on the minimum required wordlength(s) to satisfy a

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

particular precision level (0.01% in our case). 26-bit
precision was the maximum wordlength used to satisfy
a desired precision level, except for the final result
accumulator in each MC core (see section D below)
which was 48-bit wide.

A. Box-Muller Random Number Generator
The Gaussian number generator is a critical

component of the Monte-Carlo simulation engine. In
order to speed up the simulation, we chose to build a
hardware random number generator for each Monte-
Carlo simulation core. Our random number generator is
based on the Box-Muller method [9] , which is
illustrated in Figure 6.

Tausworthe
Uniform Random
Number Generator

Tausworthe
Uniform Random
Number Generator

Logarithm &
Square Root

Unit
Sqrt(-2×ln(u0))

g0 = sin(2πu1)
g1 = cos(2πu1)

ε λ

Figure 6. Box-Muller Gaussian noise generator architecture
(Two independent samples)

The Box-Muller method is conceptually straight-
forward. Given two independent realizations (u1 and u2)
of a uniform random variable over the interval [0, 1),
and a set of intermediate functions f, g1 and g2 so that:

Eq 12.)ln(2)(11 uuf ×−=

Eq 13.)2sin()(221 uug π=

Eq 14.)2cos()(222 uug π=

Then x1, x2 below provide two samples of a Gaussian
distribution N(0, 1):
Eq 15.)()(2111 ugufx =

Eq 16.)()(2212 ugufx =

As the two sets of random number are statistic
independent, one is used for the evolution of stock price
and the other is used for GARCH model.

The uniform random number generator used in this
design is called Tausworthe URNG [10] , which is
described by the pseudo-code shown in Figure 7.

Figure 7. Tausworthe URNG Algorithm

The logarithmic and trigonometric functions are
computed using the piecewise linear approximate
method presented in [11] . The logarithm errors of both
functions are shown in Figure 8 and Figure 9.

Figure 8. Logarithm error of)ln(2)(xxf ×−=

Figure 9. Logarithm error of)2sin()(1 xxg π=

We generated 100,000 samples, which gave the
probability distribution function (PDF) shown in Figure
10.

unsigned int s0, s1, s2, b;

unsigned int taus()
{
 b = (((s0 << 13) ^ s0) >> 19);

s0 = (((s0 & 0xFFFFFFFE) << 12) ^ b);
b = (((s1 << 2) ^ s1) >> 25);
s1 = (((s1 & 0xFFFFFFF8) << 4) ^ b);
b = (((s2 << 3) ^ s2) >> 11);
s2 = (((s2 & 0xFFFFFFF0) << 17) ^ b);

 return s0 ^ s1 ^ s2
}

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

Figure 10. PDF of the generated noise

We used two goodness-of-fit tests to check the
normality of the Gaussian noise: the chi-square (χ2) test
and the Kolmogorov-Smirnov (K-S) test [12] . These
are used to compute p-values for the outputs. The
general convention is to reject the null hypothesis – that
the samples are normally distributed if the p-value is
less than 0.05. The test results of our design samples
generated p-values which were greater than 0.05,
confirming the statistical normality of our samples.

B. Monte-Carlo Iterator
In this section, we present the Monte-Carlo Iterator

that corresponds to the option pricing model outlined in
section II above:

Eq 17.)))
2

((1(
2

0 ttSS t δσεδσμ +−+=Δ

The parameters S0, μ, and σ are inputs of the core,
and ε is a random variable drawn from a standardized
normal distribution, which is generated by our Box-
Muller random number core.

Assuming volatility is an input to the iterator, and
hence is a given, the only variable parameter in the
above equation is the random number, we can calculate
the other constant expressions before inputting them to
 the computing core. Rewriting Eq 17 with this
in mind gives:

Eq 18.)))
2

(1((
2

0 ttSS t δεσδσμ +−+=Δ

Therefore, we can calculate the following
coefficients in advance:

Eq 19. tq δσμ)
2

(1
2

−+=

Eq 20. tw δσ=
The architecture of the corresponding Monte-Carlo

iteration core is presented Figure 11 (the black block
represents a delay).

×

×

+

εwq

S0

MUX

Select

Figure 11. Architecture of one Monte-Carlo Iteration Core

C. Volatility Calculating Module
As volatility is a stochastic process in the GARCH

option pricing model, the inputs (q, w) for Monte-Carlo
iterator mentioned above are not constants. We use Eq
11 to get the everyday volatility before using Eq 17 to
get the evolution of the stock price. Although there is a
feedback loop in the equation used to get the volatility,
we still want to finish one time of iteration in one cycle.
Therefore, only one stage of pipeline can be used in the
feedback cycle. In order to minimize the combinatorial
logic in feedback cycle, however, we design the
GARCH module architecture as shown in Figure 12.

+

×
×
×

×

σ0βλ α

σi

Stage 1

Stage 2

Stage 3

Stage 4
σi

2

Figure 12. Architecture of the GARCH module

In Figure 12, the dashed line means one stage of
pipelining. λ is a Gaussian random number provided by
the Box-Muller random number generator. α, β, and σ0
are inputs from the top module.

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

As the output of the GARCH model is the volatility
of the stock, and the input for Monte-Carlo iterator is q
and w, we calculate these two variables in the GARCH
module. After rewriting Eq 19:

Eq 21.
2

)1(2 ttq δσμδ −+=

Then, a pair of q and w can be obtained in each
clock cycle using Eq 20 and Eq 21.

D. Post Processing
This stage is designed to gather the results generated

by each path and calculate the required output. In the
case study outlined in section II, this consists in
accumulating the option prices generated from each
path, and computing the average. Considering that the
number of paths is very large, this would result in a
large accumulator and a large divider to get the average
result. However, if we ensure that the number of paths
is a power of 2, we only need a shift register to get the
average result. The corresponding architecture of the
post-processing unit is shown in Figure 13.

Accumulator

Divider
(Shifter Register)

O
pt

io
n

Pr
ic

e
Su

m
A

ve
ra

ge

Pr
ic

e

Counter
Control

(stop)

Number of Paths

Figure 13. Architecture of the post processing unit

Obviously, using a shifter register instead of a
divider saves considerable resources, which can then be
used to generate more computing cores on a single
FPGA, hence increasing the overall performance.
Finally, note that although the number of simulation
paths can be tuned more finely using a divider than it is
using a shift register the final results are very similar
when the number of simulation paths is of 6-orders of
magnitude (within four decimals).

V. Real Hardware Implementation and Results

We implemented our Monte-Carlo simulation engine on
an FPGA supercomputer, namely the Maxwell machine.
As stated above, Maxwell is a high-performance
computer developed by FPGA High Performance
Computing Alliance (FHPCA) to demonstrate the
feasibility of running computationally demanding

applications on an array of FPGAs [7] [13] . It
comprises 32 blades housed in an IBM Blade Center.
Each blade comprises one 2.8 GHz Xeon with 1 Gbyte
memory and an FPGA PCI-X card, with two FPGAs
each. Half of Maxwell’s accelerator cards are
Nallatech’s off-the-shelf H101-PCIXM cards with
Xilinx V4100LX Virtex-4 devices [14] . The other half
are AlphaData ADM-XRC-4FX cards which contain
Xilinx XV4FX100 Virtex-4 devices. Each FPGA has
either 512 Mbytes or 1 Gbyte of private memory.

Whilst the Xeon and FPGAs on a particular blade
can communicate with each other over the PCI bus
(typical transfer bandwidth in excess of 600 Mbytes/s),
the principal communication infrastructure comprises a
fast Ethernet network with a high-performance switch
linking the Xeons together and RocketIO linking the
FPGAs. Each FPGA has 4 RocketIO links enabling the
64 FPGAs to be connected together in an 8 × 8 toroidal
mesh (see Figure 14). The RocketIO has a bandwidth in
excess of 2.5 Gbits/s per link.

Figure 14. Communication Networks on Maxwell [13]

The following presents the implementation results
for a GARCH option pricing model configuration of our
Monte-Carlo simulation engine. We designed our
hardware components using Verilog-HDL and
synthesized them using Xilinx ISE 9.2i. We could fit 11
Monte-Carlo cores (see Figure 5) on one single FPGA
chip. These occupied 39,466 slices on an XV4FX100-
ff1517 FPGA [14] , which has 42,176 slices overall.
Besides, all 160 DSP48s units were utilized. The peak
clock frequency of the core is 53MHz. We set the clock
frequency on the Maxwell’s FPGA nodes to 50MHz.

In our particular implementation instance, we used
the AlphaData nodes on the Maxwell machine. We used
the ADM-XRC-4FX Co-Processor Development Kit
(CPDK) provided by AlphaData to interface our user
application core with I/O communication hardware on
the FPGA, and generate configuration bitstream. The
structure of the CPDK is illustrated in Figure 15. In it, a
design is divided into hardware and software parts. A
C++ program is used to configure the FPGA, initialize
design parameters, and communicate with the user
application hardware. Furthermore, as we have targeted
distributed blades on the Maxwell machine, we needed
to import a communication tool to connect the nodes.
We used the Message Passing Interface (MPI) [15] for

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

this purpose. The Sun Grid Engine job scheduler (SGE)
was used to submit jobs to the Maxwell machine front-
end.

User
Processing

Core

CIF Registers

CIF Memory
Interface

CIF Aurora Local-
link Interface

HAIL

Host
Interface

Aurora
(Rocket IO)

Interface

Memory
Interfaces

Abstract Socket
(clk, rst, system_in,

system_out)

User Application

Figure 15. Structure of CPDK API [13]

Figure 16 gives the execution time of the GARCH
option pricing model on the Maxwell machine using an
increasing number of nodes. This is shown for our
FPGA implementation as well as for an equivalent
software implementation running on the 2.8 GHz Xeon
processors (FPGA vs. Software). In both cases, the
execution time reduces linearly as the number of nodes
increases. This is because inter-communication time is
negligible compared to computing time. Indeed, the
only instances where communication between the host
software and the Monte-Carlo cores (running on FPGA
or on the Xeon processors) is needed is when
parameters are broadcasted to the cores at the beginning
of the execution, and when results are gathered from the
cores at the end of the simulation. Compared to
software, our FPGA implementation results in a 340
times speed–up. It is worth mentioning that this speed-
up figure is independent of the number of nodes
(FPGA/CPU) used.

The FPGA implementation was clocked at 50MHz
only, compared to the Xeon’s 2.8GHz clock frequency.
The reason behind the high speed-up figure of the
FPGA implementation, despite the huge difference in
clock frequency, is due to the high level of process
parallelism (11 cores running in parallel on each FPGA
device) as well as the high degree of pipelining used
within each core.

In the case of the FPGA implementation, our
Monte-Carlo computing core finished one time-iteration
per 20 ns. As the inter-communication time is negligible,
we approximate the total computing time by the
following formula:

Eq 22.
)()

(
NumOfNodesNumOfCoresNumOfDays
NumOfPathsdClockPerioimeComputingT

×÷×
×=

For instance, in the case of the 32 nodes experiment,
the clock period is 20 ns, the number of paths is
216×11=7.21×105, the number of days is 100 (simulation
time), the number of cores per FPGA is 11 and the
number of nodes is 32. This gives us:

Eq 23.
msns

imeComputingT
1.410097.4

)3211()1001021.7(20
6

5

=×≈

×÷×××=

Figure 16. Execution time of the GARCH option pricing model

(FPGAs vs. Xeon Processors)

Performing meaningful comparisons with previous
work is very difficult because of differences in
algorithms used, design parameters, platform used, and
experimental set-up. Nonetheless, the following will
attempt to make a meaningful comparison with closely
related work. The work presented in [6] showed
implementation results of the GARCH model. The
results show that a Virtex-4 XC4VSX55 based
implementation outperforms an equivalent 2.66GHz
Pentium IV software implementation by a factor of 49,
which is well below our speed-up figure. This paper
also gives a result for log-normal walk model, which is
equivalent to Black-Scholes option pricing model. A
factor of 85 times speed-up can be obtained. To
compare with this, we also implemented our design
with only the Black-Scholes model i.e. with no
volatility (GARCH) module. We generated 20 Black-
Scholes iteration cores on the same FPGA, and set the
clock frequency to 75MHz. This resulted in a 750x
speedup compared to our software implementation,
which is far superior to the 85x speed-up figure reported
in [6] However, the latter paper does not report the
number of Monte-Carlo cores implemented on the
device, nor does it report the area consumed by each
Monte-Carlo core. The maximum clock frequency is
also not reported. It is hence not possible to extrapolate
these results to our case study accurately. Nonetheless,
it is safe to say that this implementation is slower than
ours, given the relative sizes of the FPGA devices used,
and the speed-up figures reported. Our implementation

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

was also scaled to a network of FPGA devices, unlike
the single-device implementation reported in [6] .

The closest comparator to our work is the
demonstration application on the Maxwell machine [7] ,
which resulted in the FPGA implementation
outperforming its CPU counterpart by a factor of 323.
However, the implementation reported in [7] was for
Asian options and was without the stochastic volatility
module, i.e. the GARCH module in Figure 5, which is
in the critical path in our design and occupies about
30% of the overall resources used. To make a more
sensible comparison, we removed our GARCH module
and added a module used for calculating an averaging
of intermediate option prices in time, which is needed
for Asian options pricing. With this option added to our
core, the speed-up figure we realised was 600x, which
is still substantially faster than the 323x speed-up
reported in [7] . Careful pipelining and block design and
mapping are behind this substantial speed-up.

VI. Conclusion

This paper presented a hardware accelerated
implementation of a Monte-Carlo simulation engine for
option pricing with stochastic volatility, on a 64-FPGA
supercomputer. The fully parallelized and pipelined
hardware core results in considerable speed-up
compared to an equivalent software implementation
(340x). Moreover, the whole design, implementation
and testing was achieved in 5 months by two PhD
students on their first year of study. This shows that
reconfigurable technology can be an efficacious and
efficient platform for supercomputing in general. A
major enabler for this was the availability of a powerful
board/system support package, as well as extensive use
of IP cores. This has to be replicated in the future if we
are to reach the same conclusion. However, it is worth
mentioning that the application considered in this paper
was massively parallel with little inter-communication
between processes. Future applications are unlikely to
follow the same pattern, and as a result the use of inter-
FPGA RocketIO links will be needed. Future research
agenda includes the extension of this work to a larger
set of option pricing models, and financial applications
in general. We also intend to experiment with floating-
point, fixed-point and other arithmetic types, looking
for trade-offs between precision, speed and resources
consumption.

References

[1] Hull, J.C. Option, futures, and other derivatives.
Prentice Hall, Upper Saddle River, 2000.

[2] Black, F. and Scholes, M. The Pricing of Options and
Corporate Liabilities. The Journal of Political
Economy. 637-654.

[3] Bollerslev, T. Generalized autoregressive conditional
heteroskedasticity. Journal of econometrics, 31. 307-
327.

[4] Zenios, S.A. High-performance computing in finance:
The last 10 years and the next. Parallel Computing, 25
(13-14). 2149-2175.

[5] Zhang, G.L., Leong, P.H.W., Ho, C.H., Tsoi, K.H.,
Cheung, C.C.C., Lee, D.-U., Cheung, R.C.C. and Luk,
W., Reconfigurable Acceleration for Monte-Carlo
based Financial Simulation. In Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE
International Conference on, (2005), 215 - 222.

[6] Thomas, D.B., Bower, J.A. and Luk, W., Hardware
architectures for Monte-Carlo based financial
simulations. In Field Programmable Technology, 2006.
FPT 2006. IEEE International Conference on, (2006),
377 - 380.

[7] Baxter, R., Booth, S., Bull, M., Cawood, G., Perry, J.,
Parsons, M., Simpson, A., Trew, A., McCormick, A.,
Smart, G., Smart, R., Cantle, A., Chamberlain, R. and
Genest, G., Maxwell - a 64 FPGA Supercomputer. in
Adaptive Hardware and Systems, 2007. AHS 2007.
Second NASA/ESA Conference on, (2007), 287-294.

[8] Boutillon, E., Danger, J.-L., and Ghazel, A. Design of
high speed AWGN communication channel emulator.
Analog Integrated Circuits and Signal Processing. 133-
142.

[9] G.E.P. Box et al., A note on the generation of random
normal deviates, Ann. Math. Statist., Vol. 29, (1958),
610-611.

[10] R.C. Tausworthe, Random Numbers Generated by
linear Recurrence Modulo Two, Math. And
Computation, vol. 19, (1965), 201-209.

[11] Mencer, O., Boullis, N., Luk, W. and Styles, H.,
Parameterized Function Evaluation for FPGAs. in
Proceedings of the 11th International Conference on
Field-Programmable Logic and Applications, (2001),
544-554.

[12] Knuth, D.E. The Art of Computer Programming,
Seminumerical algorithms. Addison-Wesley, 1997.

[13] The FPGA High Performance Computing Alliance,
http://www.fhpca.org

[14] Xilinx, Virtex-4 Family Overview, Product
Specification, http://www.xilinx.com, DS112 (v3.0),
September 28, 2007.

[15] Snir, M. and Otto, S. MPI-The Complete Reference.
MIT Press, Cambridge, MA, USA, 1998.

Engineering Letters, 16:3, EL_16_3_24
__

(Advance online publication: 20 August 2008)

