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Abstract—High performance computing is becoming 
increasingly important in the field of financial computing, 
as the complexity of financial models continues to increase. 
Many of these financial models do not have a practical 
close form solution in which case numerical methods are 
the only alternative. Monte-Carlo simulation is one of 
most commonly used numerical methods, in scientific 
computing in general, with huge computation benefits in 
solving problems where close form solutions are 
impossible to derive. As the Monte-Carlo method relies on 
the average result of thousands of independent stochastic 
paths, massive parallelism can be adopted to accelerate the 
computation. Computer clusters with off-the-shelf 
accelerator hardware are increasingly being proposed as 
an economic high performance implementation platform 
for many scientific computing applications. This paper is 
part of this trend as it presents an implementation of a 
Monte-Carlo simulation engine for option pricing on an 
FPGA-based supercomputer, called Maxwell, developed at 
the University of Edinburgh. The latter consists of a 32 
CPU cluster augmented with 64 Virtex-4 Xilinx FPGAs 
connected in a 2D torus. Our engine can implement 
various Monte-Carlo simulations on the Maxwell machine 
with speed-ups in excess of 100x compared to equivalent 
software implementations. This is illustrated in this paper 
in the context of an implementation of the GARCH option 
pricing model. Real hardware implementation shows that 
our FPGA-based implementation of the GARCH model 
outperforms an equivalent software implementation 
running on a workstation cluster with the same number of 
computing nodes (CPU/FPGA) by a factor of 340. 

 
Index Terms—Financial computing, High performance 

computing, Monte-Carlo simulation, FPGA 

I. Introduction 

High performance computing is of great importance in 
the field of finance when it comes to solving problems 
which are defined on models of financial variables. 
Many of these problems, however, cannot be solved 
with an analytical solution because of the large number 
of coupled degrees of freedom in these problems. In 
these instances, a numerical computational technique 
called the Monte-Carlo method is often used. The latter 
relies on repeated random sampling of model equations 
in order to compute their solutions. It is a technique that 
is widely used in physical chemistry, computational 
physics, and related applied fields. Monte-Carlo 
simulations are also used to forecast a wide range of 
events and scenarios, such as the weather, product sales 
and consumer demand. For instance, Figure 1 depicts 

forecasts for electricity demand in a geographical area 
based on historical data, using Monte-Carlo simulation. 

 
Figure 1. Future demand for electricity in a city 

(http://www.electricitycommission.govt.nz/opdev/modelling/demand/
natforecast) 

In financial computing, the Monte-Carlo technique 
is used to simulate the various sources of uncertainty 
that affect the value of the instrument, portfolio or 
investment in question. Many financial computing 
applications have no close form solutions, as they 
depend on three or more stochastic variables. Here, 
Monte-Carlo simulation tends to be numerically more 
efficient than other procedures [1] . This is because the 
computational time of Monte-Carlo simulations 
increases approximately linearly with the number of 
variables, whereas in most other methods, 
computational time increases exponentially with the 
number of variables. One of the important 
characteristics of Monte-Carlo simulation is parallelism 
as multiple independent paths are computed. Hence, 
massive parallelism can be adopted to accelerate the 
simulation. This paper presents an implementation of 
Generalized Autoregressive Conditional 
Heteroskedastic (GARCH) option pricing model, using 
Monte-Carlo simulation, on a FPGA supercomputer 
called Maxwell. Our FPGA-based Monte-Carlo 
simulation engine benefits from the maximum possible 
parallelism with the added advantages of 
reprogrammability and relative low power.  

Compared to previous work, this paper presents the 
fastest FPGA implementation of a Monte-Carlo based 
simulation of option pricing, ever reported in the 
literature. It also presents a complete design and 
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implementation of a generic Monte-Carlo based 
simulation engine on an FPGA supercomputer. 

The remainder of this paper is organized as follows. 
First, section 2 presents background information on 
options, the evolution of stock prices, the GARCH 
model, and Monte-Carlo based simulation of option 
pricing. Section 3 then reports previous hardware 
implementations of Monte-Carlo option pricing 
simulation. After that, our own hardware 
implementation is presented in detail, in section 4, 
including the implementation details of a random 
number generator using the Box-Muller method, a 
stochastic volatility computing module, as well the 
system design details of a complete Monte-Carlo based 
engine for option pricing. The implementation results 
on the Maxwell FPGA supercomputer are then 
presented in section 5. The latter will include 
information about the Maxwell machine architecture, 
message passing interface, and front-end software 
design. A comparison of our hardware implementation 
results with our own equivalent software 
implementations as well as other implementations 
reported in the literature is then presented in section 6. 
Finally, conclusions and plans for future work are 
drawn. 

II. Background 

In this section, we will present basic background 
material related of relevance to the rest of this paper, 
including concept of options, the behaviour of stock 
prices, the GARCH model of stock evolution, and the 
mathematical underpinnings of Monte-Carlo based 
simulation of option prices. 

A. Concept of Options 
Options are traded both on stock exchanges and on 

over-the-counter markets. There are two basic types of 
options [1] : a call option which gives the holder the 
right to buy the underlying asset by a certain date for a 
certain price, and a put option which gives the holder 
the right to sell the underlying asset by a certain date for 
a certain price. The price in the contract is known as the 
exercise price or strike price, and the date in the 
contract is known as the expiration date or maturity. 
Within these types, we also distinguish between two 
main types of options: American options which are call 
or put options that can be exercised at any time up to 
the expiration date, and European options which can be 
exercised only on the expiration date itself. There are 
also Asian options on the market which differ from 
European and American options in that their strike price 
is the average price of the asset over a period of time, 
computed by collecting the daily closing price over the 
life of the option. In this paper, we focus mainly on 
European options. 

B. Evolution of Stock Prices 
Since options are traded on the stock market, their 

value/price changes according to offer and demand. If S 
is the stock price at time t, the expected drift rate in S 
should be assumed to be μS for a constant parameter of 
μ. This means that in a short interval of time, given as δt, 
the expected increase in S is μSδt. The parameter μ is 
the expected rate of return on the stock, expressed in 
decimal form. If the volatility of the stock price is 
always zero, this model implies that: 

Eq 1. tSS δμδ =  

In the limit as δt  0, 
Eq 2. SdtdS μ=  

Or 
Eq 3. dt

S
dS μ=  

In practice, a stock price does exhibit volatility 
however. A reasonable assumption is that the variability 
of the percentage return in a short period of time (δt) is 
the same regardless of the stock price. This suggests 
that the standard deviation of the change, in interval δt, 
should be proportional to the stock price, which leads to 
the following model: 

Eq 4. SdzSdtdS σμ +=  

Or 

Eq 5. dzdt
S

dS σμ +=  

where variable σ is the volatility of the stock price, and 
variable μ is its expected rate of return. The discrete-
time version of the model is: 

Eq 6. ztS σδμδδ +=  

The variable δS is the change in the stock price S in 
a small time interval δt, and δz is a random number 
drawn from a standardized normal (Gaussian) 
distribution. The parameter μ is the expected rate of 
return per unit of time from the stock, and the parameter 
σ is the volatility of the stock price per unit of time. By 
importing Ito’s lemma [1] to derive the process 
followed by G, defined as: 

Eq 7. SG ln=  
we obtain: 

Eq 8. dzdtdG σσμ +−= )
2

(
2

 

Here, dz is a Wiener process which is related to dt 
by the following equation: 

Eq 9. dtdz ε=  
ε is a random variable with a normal (Gaussian) 

distribution with a mean of zero and a standard 
deviation of 1.0. Rewriting Eq 8 with the relationship in 
Eq 9, we get: 

Eq 10. dtdtdG σεσμ +−= )
2

(
2
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This model is also called the Black-Scholes option 
pricing model [2] . 

C. Stochastic Volatility 
One assumption in the Black-Scholes model that is 

not always true in practice is the assumption that 
volatility is constant. Indeed, practitioners often find it 
necessary to change the volatility parameter when using 
the Black-Scholes model to value options. In the case 
where the stock price and volatility are correlated, there 
is no simple solution to the model equations and Monte-
Carlo based simulations often become necessary.  

One technique for modeling volatility that has 
become popular is GARCH model [3] . The most 
commonly used GARCH model is GARCH (1, 1) 
where the volatility is given by the following equation: 
Eq 11. 22

1
2

10
2 λβσασσσ −− ++= iii  

Here α, and β are constants which can be estimated 
from historical data using maximum likelihood methods. 
σ0 is the volatility of the stock price at time 0, σi and σi-1 
are the volatilities at time iΔt and (i-1)Δt. λ is a random 
variable with a normal (Gaussian) distribution with a 
mean of zero and a standard deviation of 1.0. Notice 
that the random variable in the GARCH model is 
different from the one used in the describing the 
evolution of stock prices. The two random variables 
represent two independent stochastic processes.  

For options that last less than a year, the pricing 
impact of a stochastic volatility is fairly small in 
absolute terms. It becomes progressively larger as the 
life of the option increases.  

D. Monte-Carlo Simulation 
Monte-Carlo simulation of a stochastic process like 

the one depicted in Eq 8 is a procedure for sampling 
random outcomes of that process, associating an event 
(e.g. a particular variability of the stock) with a set of 
outcomes (e.g. a particular strike price at time t) and 
defining the probability of the event to be its volume or 
measure relative to that of a universe of possible 
outcomes. Monte-Carlo simulation tends to be 
numerically more efficient than other procedures when 
there are many stochastic variables. Figure 2 gives the 
evolution of a stock’s price in time, for 50 different 
random paths.  

 
Figure 2. 50 paths of stock price evolution 

III. High Performance Monte-Carlo based 
Financial Computing 

Initially, financial computing did not benefit greatly 
from developments in high performance computing, as 
the latter aimed mainly at engineering and weapon 
design applications. Besides, financial experts were 
initially focusing on developing mathematical models 
and computer simulations in order to comprehend the 
behaviour of financial markets and develop risk-
management tools. As this effort progressed, the 
complexity of financial computing applications grew up 
rapidly. Indeed, as the number of stochastic parameters 
involved in financial models increased, close form 
solutions became impractical to derive, and hence 
Monte-Carlo based sampling methods became an 
attractive alternative. As a result, parallel computing 
systems offered a distinctive advantage and were 
subsequently introduced into the realm of financial 
computing.  

In [4] , a survey of high performance computing 
systems and computer-aided design tools for financial 
computing was presented. Figure 3 illustrates the 
processing time needed to derive the state dependent 
pricing of a portfolio of mortgage backed securities on a 
number of computing platforms. This shows that 
simulations that would take several hours on 
workstations could be completed within few minutes on 
a CRAY X-MP supercomputer and within less than a 
minute on a massively parallel system. 

 
Figure 3. State dependent pricing of a portfolio of mortgage backed 
securities on a variety of workstations, supercomputer CRAY X-MP, 
a workstations cluster, and a massively parallel Connection Machine 

CM-2a (Source: [4] ) 

The cost of cluster computers and supercomputers 
can, however, be prohibitive. Area and power 
consumption can also be a major disadvantage of these 
computing platforms.  For these reasons, alternative 
platforms are being considered. Field Programmable 
Gate Arrays (FPGAs), for instance, offer the high 
performance of a dedicated hardware solution of a 
particular algorithm, with a fraction of the area and 
power consumption of equivalent microprocessor-based 
solutions. Moreover, the continuous developments in 
transistor integration levels mean that it is now possible 
to implement a considerable number of floating-point 
arithmetic units on modern FPGAs. If this trend is to 
continue, FPGA use is set to conquer new application 
domains, including financial computing. The following 
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presents a number of recent FPGA-based financial 
computing application implementations. 

In [5] , an FPGA-based Monte-Carlo simulation 
core used for computing the BGM (Brace, Gatarek and 
Musiela) interest rate model for pricing derivatives was 
presented. The BGM interest rate model is commonly 
used to simulate the fluctuation of interest rates over 
time, something which has an influence on nearly all 
economic activity. Results show that around 25 times 
speed-up can be obtained by using an FPGA, compared 
to an equivalent Pentium IV 1.5GHz based software 
implementation. Other hardware architectures for 
Monte-Carlo based financial simulations were 
published in [6] . In this paper, five different Monte-
Carlo option pricing simulation algorithms were 
explored, including log-normal price movements, 
correlated asset Value-at-Risk calculation, and price 
movements under the GARCH model. Using a Xilinx 
Virtex-4 XC4VSX55 device, implementation results 
show that FPGA implementations run on-average 80 
times faster than equivalent software ones (running on a 
2.66GHz PC).  

 
Figure 4. Single node performance of Asian option pricing 

simulation on the Maxwell machine [7]  

The combination of cluster technology and 
reconfigurable hardware acceleration is a relatively new 
development in high performance computing, which 
promises to combine the relatively high performance 
and low power consumption of reconfigurable hardware 
with established design flows and consequent 
knowledge base in traditional microprocessor based 
high performance computing. Maxwell, a 
supercomputer with 64 FPGA nodes, is a relatively 
recent development in this direction [7] . A simple 
Asian option pricing core was designed as a 
demonstration application on Maxwell. As mentioned 
above, Asian options are a special type of options where 
the strike price is the average price of the asset over a 
period of time, computed by collecting the daily closing 
price over the life of the option. The implementation 
results of this demonstrator application are shown is 
Figure 4 (AlphaData and Nallatech are the two FPGA 
companies that donated the FPGA accelerator nodes on 
the Maxwell machine, 32 each). The results show that 
the AlphaData nodes lead to ~320-time speed-up 

compared to an equivalent software implementation, 
whereas the Nallatech nodes lead to a 109-time speed-
up. The discrepancy is due to the design language/flow 
used for each node type: VHDL for AlphaData and a 
proprietary C-based hardware language, called DIME-C, 
for Nallatech. 

IV. Our Hardware Architecture of a Monte-
Carlo Simulation Engine 

Monte-Carlo simulation relies on stochastic sampling, 
and as such random number generation is a key part of 
it. Software implementations of random number 
generators are relatively slow, that is why a hardware 
implementation is required. However, while software 
implementations are abundant, hardware ones are 
relatively few. In the option pricing equations presented 
in section II above, a Gaussian random number 
generator is required. In this paper, we use the Box-
Muller method for the hardware generation of Gaussian 
random numbers [8] .  

The hardware architecture of our Monte-Carlo 
simulation engine is shown in Figure 5. In it, N Monte-
Carlo computing cores run in parallel to generate N 
different paths at the same time. Therefore, the total 
number of paths that each core has to compute is equal 
to the total number of paths required divided by N. In 
the end, results from each core e.g. average option price 
over N paths, are collected by the host (in software). 
The latter will perform high level operations on these 
results e.g. averaging the intermediate results to 
calculate the most probable strike price. 
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Figure 5. Generic architecture of a Monte-Carlo simulation engine 

Each computing core comprises the following 
components: (a) one Box-Muller random number 
generator, (b) a simulation core that provides 
computational resources for iteration, (c) a stochastic 
volatility computing module based on the GARCH 
model,  and (d) a post processing module e.g. for 
averaging intermediate option prices. 

The following sub-sections describe the detailed 
design of each module presented in Figure 5. Before 
that, however, we note that we have decided to use 
fixed-point arithmetic to implement all of these units 
after performing a range analysis in MALAB to decide 
on the minimum required wordlength(s) to satisfy a 
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particular precision level (0.01% in our case). 26-bit 
precision was the maximum wordlength used to satisfy 
a desired precision level, except for the final result 
accumulator in each MC core (see section D below) 
which was 48-bit wide. 

A. Box-Muller Random Number Generator 
The Gaussian number generator is a critical 

component of the Monte-Carlo simulation engine. In 
order to speed up the simulation, we chose to build a 
hardware random number generator for each Monte-
Carlo simulation core. Our random number generator is 
based on the Box-Muller method [9] , which is 
illustrated in Figure 6. 

Tausworthe 
Uniform Random 
Number Generator

Tausworthe 
Uniform Random 
Number Generator

Logarithm & 
Square Root 

Unit
Sqrt(-2×ln(u0))

g0 = sin(2πu1)
g1 = cos(2πu1)

ε λ
 

Figure 6. Box-Muller Gaussian noise generator architecture        
(Two independent samples) 

The Box-Muller method is conceptually straight-
forward. Given two independent realizations (u1 and u2) 
of a uniform random variable over the interval [0, 1), 
and a set of intermediate functions f, g1 and g2 so that: 

Eq 12. )ln(2)( 11 uuf ×−=  

Eq 13. )2sin()( 221 uug π=  

Eq 14. )2cos()( 222 uug π=  

Then x1, x2 below provide two samples of a Gaussian 
distribution N(0, 1): 
Eq 15. )()( 2111 ugufx =  

Eq 16. )()( 2212 ugufx =  

As the two sets of random number are statistic 
independent, one is used for the evolution of stock price 
and the other is used for GARCH model. 

The uniform random number generator used in this 
design is called Tausworthe URNG [10] , which is 
described by the pseudo-code shown in Figure 7. 

 
 

   
Figure 7. Tausworthe URNG Algorithm 

The logarithmic and trigonometric functions are 
computed using the piecewise linear approximate 
method presented in [11] . The logarithm errors of both 
functions are shown in Figure 8 and Figure 9. 

 
Figure 8. Logarithm error of )ln(2)( xxf ×−=  

 
Figure 9. Logarithm error of )2sin()(1 xxg π=  

We generated 100,000 samples, which gave the 
probability distribution function (PDF) shown in Figure 
10.  

unsigned int s0, s1, s2, b; 
 
unsigned int taus() 
{ 
    b = (((s0 << 13) ^ s0) >> 19); 

s0 = (((s0 & 0xFFFFFFFE) << 12) ^ b); 
b = (((s1 << 2) ^ s1) >> 25); 
s1 = (((s1 & 0xFFFFFFF8) << 4) ^ b); 
b = (((s2 << 3) ^ s2) >> 11); 
s2 = (((s2 & 0xFFFFFFF0) << 17) ^ b); 

    return s0 ^ s1 ^ s2 
} 
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Figure 10. PDF of the generated noise 

We used two goodness-of-fit tests to check the 
normality of the Gaussian noise: the chi-square (χ2) test 
and the Kolmogorov-Smirnov (K-S) test [12] . These 
are used to compute p-values for the outputs. The 
general convention is to reject the null hypothesis – that 
the samples are normally distributed if the p-value is 
less than 0.05. The test results of our design samples 
generated p-values which were greater than 0.05, 
confirming the statistical normality of our samples.  

B. Monte-Carlo Iterator 
In this section, we present the Monte-Carlo Iterator 

that corresponds to the option pricing model outlined in 
section II above: 

Eq 17. )))
2

((1(
2

0 ttSS t δσεδσμ +−+=Δ
 

The parameters S0, μ, and σ are inputs of the core, 
and ε is a random variable drawn from a standardized 
normal distribution, which is generated by our Box-
Muller random number core.  

Assuming volatility is an input to the iterator, and 
hence is a given, the only variable parameter in the 
above equation is the random number, we can calculate 
the other constant expressions before inputting them to 
 the computing core. Rewriting Eq 17 with this 
in mind gives:   

Eq 18. )))
2

(1((
2

0 ttSS t δεσδσμ +−+=Δ
 

Therefore, we can calculate the following 
coefficients in advance: 

Eq 19. tq δσμ )
2

(1
2

−+=  

Eq 20. tw δσ=  
The architecture of the corresponding Monte-Carlo 

iteration core is presented Figure 11 (the black block 
represents a delay).  

 

×

×
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εwq
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MUX
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Figure 11. Architecture of one Monte-Carlo Iteration Core 

C. Volatility Calculating Module 
As volatility is a stochastic process in the GARCH 

option pricing model, the inputs (q, w) for Monte-Carlo 
iterator mentioned above are not constants. We use Eq 
11 to get the everyday volatility before using Eq 17 to 
get the evolution of the stock price. Although there is a 
feedback loop in the equation used to get the volatility, 
we still want to finish one time of iteration in one cycle. 
Therefore, only one stage of pipeline can be used in the 
feedback cycle. In order to minimize the combinatorial 
logic in feedback cycle, however, we design the 
GARCH module architecture as shown in Figure 12. 

+

×
×
×

×

σ0βλ α

σi

Stage 1

Stage 2

Stage 3

Stage 4
σi

2

 
Figure 12. Architecture of the GARCH module 

In Figure 12, the dashed line means one stage of 
pipelining. λ is a Gaussian random number provided by 
the Box-Muller random number generator. α, β, and σ0 
are inputs from the top module.  
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As the output of the GARCH model is the volatility 
of the stock, and the input for Monte-Carlo iterator is q 
and w, we calculate these two variables in the GARCH 
module. After rewriting Eq 19: 

Eq 21. 
2

)1( 2 ttq δσμδ −+=  

Then, a pair of q and w can be obtained in each 
clock cycle using Eq 20 and Eq 21. 

D. Post Processing 
This stage is designed to gather the results generated 

by each path and calculate the required output. In the 
case study outlined in section II, this consists in 
accumulating the option prices generated from each 
path, and computing the average. Considering that the 
number of paths is very large, this would result in a 
large accumulator and a large divider to get the average 
result. However, if we ensure that the number of paths 
is a power of 2, we only need a shift register to get the 
average result. The corresponding architecture of the 
post-processing unit is shown in Figure 13. 
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Figure 13. Architecture of the post processing unit 

Obviously, using a shifter register instead of a 
divider saves considerable resources, which can then be 
used to generate more computing cores on a single 
FPGA, hence increasing the overall performance. 
Finally, note that although the number of simulation 
paths can be tuned more finely using a divider than it is 
using a shift register the final results are very similar  
when the number of simulation paths is of 6-orders of 
magnitude (within four decimals). 

V. Real Hardware Implementation and Results 

We implemented our Monte-Carlo simulation engine on 
an FPGA supercomputer, namely the Maxwell machine. 
As stated above, Maxwell is a high-performance 
computer developed by FPGA High Performance 
Computing Alliance (FHPCA) to demonstrate the 
feasibility of running computationally demanding 

applications on an array of FPGAs [7] [13] . It 
comprises 32 blades housed in an IBM Blade Center. 
Each blade comprises one 2.8 GHz Xeon with 1 Gbyte 
memory and an FPGA PCI-X card, with two FPGAs 
each. Half of Maxwell’s accelerator cards are 
Nallatech’s off-the-shelf H101-PCIXM cards with 
Xilinx V4100LX Virtex-4 devices [14] . The other half 
are AlphaData ADM-XRC-4FX cards which contain 
Xilinx XV4FX100 Virtex-4 devices. Each FPGA has 
either 512 Mbytes or 1 Gbyte of private memory.  

Whilst the Xeon and FPGAs on a particular blade 
can communicate with each other over the PCI bus 
(typical transfer bandwidth in excess of 600 Mbytes/s), 
the principal communication infrastructure comprises a 
fast Ethernet network with a high-performance switch 
linking the Xeons together and RocketIO linking the 
FPGAs. Each FPGA has 4 RocketIO links enabling the 
64 FPGAs to be connected together in an 8 × 8 toroidal 
mesh (see Figure 14). The RocketIO has a bandwidth in 
excess of 2.5 Gbits/s per link.  

 
Figure 14. Communication Networks on Maxwell [13]  

The following presents the implementation results 
for a GARCH option pricing model configuration of our 
Monte-Carlo simulation engine. We designed our 
hardware components using Verilog-HDL and 
synthesized them using Xilinx ISE 9.2i. We could fit 11 
Monte-Carlo cores (see Figure 5) on one single FPGA 
chip. These occupied 39,466 slices on an XV4FX100-
ff1517 FPGA [14] , which has 42,176 slices overall. 
Besides, all 160 DSP48s units were utilized. The peak 
clock frequency of the core is 53MHz. We set the clock 
frequency on the Maxwell’s FPGA nodes to 50MHz. 

In our particular implementation instance, we used 
the AlphaData nodes on the Maxwell machine. We used 
the ADM-XRC-4FX Co-Processor Development Kit 
(CPDK) provided by AlphaData to interface our user 
application core with I/O communication hardware on 
the FPGA, and generate configuration bitstream. The 
structure of the CPDK is illustrated in Figure 15. In it, a 
design is divided into hardware and software parts. A 
C++ program is used to configure the FPGA, initialize 
design parameters, and communicate with the user 
application hardware. Furthermore, as we have targeted 
distributed blades on the Maxwell machine, we needed 
to import a communication tool to connect the nodes. 
We used the Message Passing Interface (MPI) [15]  for 
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this purpose. The Sun Grid Engine job scheduler (SGE) 
was used to submit jobs to the Maxwell machine front-
end. 
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Figure 15. Structure of CPDK API [13]  

Figure 16 gives the execution time of the GARCH 
option pricing model on the Maxwell machine using an 
increasing number of nodes. This is shown for our 
FPGA implementation as well as for an equivalent 
software implementation running on the 2.8 GHz Xeon 
processors (FPGA vs. Software). In both cases, the 
execution time reduces linearly as the number of nodes 
increases. This is because inter-communication time is 
negligible compared to computing time. Indeed, the 
only instances where communication between the host 
software and the Monte-Carlo cores (running on FPGA 
or on the Xeon processors) is needed is when 
parameters are broadcasted to the cores at the beginning 
of the execution, and when results are gathered from the 
cores at the end of the simulation. Compared to 
software, our FPGA implementation results in a 340 
times speed–up. It is worth mentioning that this speed-
up figure is independent of the number of nodes 
(FPGA/CPU) used. 

The FPGA implementation was clocked at 50MHz 
only, compared to the Xeon’s 2.8GHz clock frequency. 
The reason behind the high speed-up figure of the 
FPGA implementation, despite the huge difference in 
clock frequency, is due to the high level of process 
parallelism (11 cores running in parallel on each FPGA 
device) as well as the high degree of pipelining used 
within each core. 

In the case of the FPGA implementation, our 
Monte-Carlo computing core finished one time-iteration 
per 20 ns. As the inter-communication time is negligible, 
we approximate the total computing time by the 
following formula: 

Eq 22. 
)()

(
NumOfNodesNumOfCoresNumOfDays
NumOfPathsdClockPerioimeComputingT

×÷×
×=  

For instance, in the case of the 32 nodes experiment, 
the clock period is 20 ns, the number of paths is 
216×11=7.21×105, the number of days is 100 (simulation 
time), the number of cores per FPGA is 11 and the 
number of nodes is 32. This gives us: 

Eq 23. 
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Figure 16. Execution time of the GARCH option pricing model 

(FPGAs vs. Xeon Processors) 

Performing meaningful comparisons with previous 
work is very difficult because of differences in 
algorithms used, design parameters, platform used, and 
experimental set-up. Nonetheless, the following will 
attempt to make a meaningful comparison with closely 
related work. The work presented in [6] showed 
implementation results of the GARCH model. The 
results show that a Virtex-4 XC4VSX55 based 
implementation outperforms an equivalent 2.66GHz 
Pentium IV software implementation by a factor of 49, 
which is well below our speed-up figure. This paper 
also gives a result for log-normal walk model, which is 
equivalent to Black-Scholes option pricing model. A 
factor of 85 times speed-up can be obtained. To 
compare with this, we also implemented our design 
with only the Black-Scholes model i.e. with no 
volatility (GARCH) module. We generated 20 Black-
Scholes iteration cores on the same FPGA, and set the 
clock frequency to 75MHz. This resulted in a 750x 
speedup compared to our software implementation, 
which is far superior to the 85x speed-up figure reported 
in [6]  However, the latter paper does not report the 
number of Monte-Carlo cores implemented on the 
device, nor does it report the area consumed by each 
Monte-Carlo core. The maximum clock frequency is 
also not reported. It is hence not possible to extrapolate 
these results to our case study accurately. Nonetheless, 
it is safe to say that this implementation is slower than 
ours, given the relative sizes of the FPGA devices used, 
and the speed-up figures reported. Our implementation 

Engineering Letters, 16:3, EL_16_3_24
______________________________________________________________________________________

(Advance online publication: 20 August 2008)



  

was also scaled to a network of FPGA devices, unlike 
the single-device implementation reported in [6] .  

The closest comparator to our work is the 
demonstration application on the Maxwell machine [7] , 
which resulted in the FPGA implementation 
outperforming its CPU counterpart by a factor of 323. 
However, the implementation reported in [7] was for 
Asian options and was without the stochastic volatility 
module, i.e. the GARCH module in Figure 5, which is 
in the critical path in our design and occupies about 
30% of the overall resources used. To make a more 
sensible comparison, we removed our GARCH module 
and added a module used for calculating an averaging 
of intermediate option prices in time, which is needed 
for Asian options pricing. With this option added to our 
core, the speed-up figure we realised was 600x, which 
is still substantially faster than the 323x speed-up 
reported in [7] . Careful pipelining and block design and 
mapping are behind this substantial speed-up. 

VI. Conclusion 

This paper presented a hardware accelerated 
implementation of a Monte-Carlo simulation engine for 
option pricing with stochastic volatility, on a 64-FPGA 
supercomputer. The fully parallelized and pipelined 
hardware core results in considerable speed-up 
compared to an equivalent software implementation 
(340x). Moreover, the whole design, implementation 
and testing was achieved in 5 months by two PhD 
students on their first year of study. This shows that 
reconfigurable technology can be an efficacious and 
efficient platform for supercomputing in general. A 
major enabler for this was the availability of a powerful 
board/system support package, as well as extensive use 
of IP cores. This has to be replicated in the future if we 
are to reach the same conclusion. However, it is worth 
mentioning that the application considered in this paper 
was massively parallel with little inter-communication 
between processes.  Future applications are unlikely to 
follow the same pattern, and as a result the use of inter-
FPGA RocketIO links will be needed. Future research 
agenda includes the extension of this work to a larger 
set of option pricing models, and financial applications 
in general. We also intend to experiment with floating-
point, fixed-point and other arithmetic types, looking 
for trade-offs between precision, speed and resources 
consumption.  
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