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Abstract 
Multiple Input Multiple Output (MIMO) has gradually 
become the most promising technique for the next 
generation wireless telecommunications systems. MMSE-
VBLAST has a performance close to Maximum Likelihood 
with considerably low complexity. The improvements in 
the algorithm results in substantial computation and 
hence hardware savings as it avoids the hardware cost 
expensive square root and division operations. This 
improvement decreases the computational complexity of 
MMSE-VBLAST with no performance penalty compared 
to previous MMSE-VBLAST algorithmic. This has finally 
be validated for 2x2 and 4x4 MIMO systems using a rapid 
prototyping methodology that starts with full software 
formulation in MATLAB and ends with an optimized 
equivalent FPGA hardware implementation. 
 
 

1. Introduction 
 

In the last ten years, the use of MIMO technology in 
wireless links has been extensively studied, mostly from 
the theoretical point of view, showing that significant 
capacity increases could be achieved under certain 
conditions by using multiple antennas at both transmitter 
and receiver. Vertical Bell Laboratories Layered Space 
Time coding (V-BLAST) [1] is a MIMO communication 
architecture proposed by Bell laboratories. For the 
uncoded MIMO case in the V-BLAST receiver, the 
Minimum Mean Square Error (MMSE) algorithm is 
widely considered as an efficient approach to obtain near-
to -ML performance with reduced complexity. 

  Nowadays, the prototyping of those multiple-antenna 
systems has become increasingly important to verify the 
enhancements advanced by analytical results. However, in 
most cases, the target platform is rarely used as feedback 
to investigate ways of improving the algorithm. The main 
aim of the rapid prototyping methodology is to be able to 
verify the improvements from the algorithmic point of 
view using real-time prototype. 

The paper starts from the generic MIMO system and 
presents the rapid prototyping methodology, adopted in 
the work, and shows how it can be applied to wireless 
MIMO system development. It then focuses on Cholesky 
decomposition and Triangular inversion algorithms, 
provides an improved solution and compares it with 
alternative techniques. Then, the paper analyzes two 
specific MIMO systems, namely 2x2 and 4x4 MMSE-
VBLAST using the proposed solution, with simulation 
results provided. The work finally analyzes fixed point 
simulation of our solutions with 3-sigma automatic gain 
control (AGC). The prototyping of improved MMSE-
VBLAST solution is presented at last. This validates the 
claimed efficiency of the improved solution. 
 

2. MIMO System Model 
 

An MxN MIMO system model is depicted in Figure 1. 

Figure 1. MIMO channel model 
 

M, N represents the number of transmitter and receiver 
antennas, and s1, s2 … sM, s1

’, s2
’ … sN

’, are the sub signal 
flows of transmitter and receiver respectively. The model 
can be formalized as: 

= +r Hs n                               (1) 
where r= [r1, r2, …, rN]T denotes the received signal N-

vector, H is MxN signal matrix, s= [s1, s2, …, sM]T denotes 
the transmitted signal M-vector, and n= [n1, n2, …, nN]T 
represents N-vector of independent and identically 
distributed (i.i.d) complex additive white Gaussian noise 
(AWGN) samples with variance N0 [2]. 

 
3. Rapid Prototyping Approach 



 
The rapid prototyping methodology used in this work is 

actually a rapid functional validation method. It uses a 
MATLAB simulink environment (the Xilinx System 
Generator in this case) to prototype the system 
architecture and generates the corresponding relevant 
HDL files. Then, ModelSim and/or any vendor-specific 
simulation tool, e.g. Xilinx ISE in this case, are used to 
validate the functionality of the hardware produced. The 
latter should replicate the simulation results produced by 
the MATLAB-Simulink environment, and serves only as a 
checking/verification step. This rapid prototyping method 
saves considerable time especially for large-scale complex 
systems, and is thereby much more effective.  

Using this rapid prototyping methodology allows for a 
high-level design to be quickly translated from algorithm 
design into system architecture. The researcher can 
initially realize a research idea or standard in the form of 
an algorithm written in software. The latter can then be 
used as a gold reference. From an implementation 
prospect, the use of this rapid prototyping methodology 
has the advantage of identifying the complexity issue and 
related costs in early development times. From the design 
prospect, this methodology has the advantage of quickly 
identifying bottlenecks, trade-offs between different 
design parameters, and ultimately identifying the 
necessary trade-offs for optimized solutions. 

Several prototyping systems have been developed in 
both academic research and professional development for 
MIMO systems. For example, a single-carrier MIMO 
system is described in [3], [4] and [5], and a MIMO-
OFDM system is implemented in [6]. All of them focus on 
system integration and realize wireless channel testing. 
However, these are not suitable for rapid validation and of 
novel MIMO detection algorithms. The rapid prototyping 
method used in this work mainly concentrates on the 
signal processing side of MIMO systems and allow for the 
rapid validation of complex MIMO detection algorithms 
to find out the system bottlenecks in early in the 
development process. 

The working process is described as follows. Firstly, 
the MATLAB language is used to simulate the complete 
MIMO system including transmitter, different MIMO 
algorithms and receiver, in double precision. The system’s 
fixed point simulation is then deduced to decide on the 
precision needed for hardware implementation (as double 
precision and floating point arithmetic in general is 
generally prohibitively expensive in hardware). Automatic 
gain control should be used at this stage in order to 
normalize input data. Complicated mathematical analysis 
should be substituted by basic mathematical operations 
(i.e. add/sub, multiply, shift etc.), and exponent and 
logarithm operations should be replaced by their 
respective adequate hardware approximation functions e.g. 
Taylor and Maclaurin series. Performance results for 

different fixed-point precisions are then compared with 
the gold reference double precision simulation results. 
The fixed point precision that is closest to the double 
precision performance (according to a developer criterion) 
is then chosen. Trying to intensive fixed point simulation 
to each mathematical unit of the system, and finding the 
optimal fixed point precision to satisfy the overall 
precision requirement can save large amounts of hardware 
and leads to quicker implementations. The algorithm is 
then prototyped in Xilinx System Generator (a MATLAB-
Simulink plug-in) and then compiled and synthesized to 
FPGA hardware. No hardware description language e.g. 
Verilog HDL/VHDL, is required to capture the system 
under study in System Generator as this is a graphical user 
environment with building blocks (hard or soft) linked in a 
data flow. Hardware optimized for a particular FPGA 
family (the target family) is generated automatically from 
such descriptions by System Generator, in the form of 
VHDL or Verilog. The latter is then synthesized, mapped 
and routed using Xilinx’s ISE tools. These tools generate 
a number of reports which help us analyze the resource 
usage and timing performance of the resulting hardware 
configurations. Bottlenecks can arise at this stage of the 
development process.  

This methodology has been used in this work in order 
to rapidly prototype MIMO detection algorithms in 
hardware. The methodology is distinguished by its speed, 
early functional validation, and fast route to hardware 
implementation. 
 

4. Improved Cholesky Decomposition 
 
4.1. Improved algorithm 
 

With Cholesky Decomposition and Triangular Matrix 
Inversion [7], the i-th iteration of MMSE-VBLAST 
becomes as follows: 
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where Gi is the G matrix at iteration i, Li is the Cholesky 
Decomposition of Gi and its triangular inversion is 
denoted by qi. Multiplying qi and the relevenet complex 
conjugate transpose of qi

H, the pseudo inversion of Gi can 
then be transformed to Qi, Next, the nulling vector wi 
calculated as the j-th row of Qi, and the j-th element with 



the minimum norm in Qi is the strongest channel to be 
estimated in the current iteration. The estimated transmit 
symbol can be computed byˆis to match the closest multi-

dimensional constellation point. After nulling the signal of 
the j-th channel from the received signal and cancelling 
the j-th column from the channel matrix H, the computing 
steps into the (i+1)-th iteration. 

Taking notice of the estimated symbol 
îs , the nulling 

vector wi appears in both numerator and denominator, so 
any scale of wi will not take effect of the estimated 
symbol. This is key to the algorithm improvement 
proposed here. Indeed, as the Qi coming from the 
multiplication of the inverse of two triangular matrices is 
actually the Cholesky decomposition of a positive definite 
Hermitian matrix Gi, several square root and division 
operations can be optimized away, which reduces the 
necessary hardware implementation resources drastically. 

The following briefly describe the computing of the 4th 
iteration of a 4x4 matrix case, in order to demonstrate the 
improvement claimed here. 

G matrix is assumed as, 11 12 13 14
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The Cholesky decomposition of G is then: 
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which has the same factor in each column and can be 
factorized as: 
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where A is the relevant element of G matrix, while B, C, D 
are new elements computed by Cholesky decomposition. 
The complex conjugate transpose of L then can be 
factorized as: 
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Hence, we can easily deduce that:  
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As a result, the original squared root operations have 

been eliminated. Based on the Cholesky Decomposition 
algorithm, the relevant elements of the triangular matrix 
can be given by the following expressions 
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where (.)’ denotes the transpose value of corresponding 

element, and ( )⋅ denotes the denominator of the relevant 
expression. At this stage, the Cholesky decomposition has 
been reformulated to become the product of the inverse of 
two triangular matrixes (each is the transpose the other) 
and one diagonal matrix, with no need for the square root 
and division operations. The only remaining computation 
is the inversion of the triangular matrix. 
Based on the triangular matrix inversion algorithm 
mentioned in [7], the inverse of the two triangular 
transpose matrices are also transpose, and the inversion of 
the lower and upper triangular matrix is also a lower and 
upper triangular matrix, respectively. Therefore, on the 
assumption of the lower triangular matrix in (8), the 
inversion of triangular matrix can be basically computed 
by back substitution as the following form, 
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From the formula deduction, each element of q 

multiplies the common factor of11 22 33 44A B C D , saving the 
division operations. As a result, the pseudo matrix 
inversion of G reduces to a multiplication of three 
matrices without any expensive square root and division 
operations. It should be noted at this stage that the 
technique presented above for the case of a 4x4 system is 
applicable to any NxN system. From (7) each element of 
the Cholesky decompostion is dealt with one by one, 
which can be pipelined in hardware in order to increase 
throughput. In the back substitution triangular inversion, 
however, there is no correlation between the computations 
of each element and what only need is the elements 
factorized by Cholesky decomposition, which means that 
we can employ instruction parallelism to speed up the 
computation.  

 
Table 1. Operation complexity of the two algorithms 

Algorithms Cholesky 
Decomposition 

Improved Cholesky 
Decomposition 

Addition 3 21 1

2 2
n n n− −

 

3 21 1

2 2
n n n− −  

Multiplication 
3 22 2

3 3
n n n+ −

 

3 22 3 1
2

3 2 6
n n n+ − −

 
Division 2 1n −  0  

Square Root n  0  
 

 
Figure 2. BER Performance for our improved MMSE-
VBLAST VS original MMSE-VBLAST formulation, for 
2x2 and 4x4 MIMO systems with BPSK modulation 

 

Table 1 illustrates the addition, multiplication, division, 
square root operation for each of the improved Cholesky 
Decomposition and the original one, supposing nxn 
squared target matrix here. The operation complexity is 
O(n3) for both of them. The improved one use 1/2n2 
additional multiplications though, it totally frees 2n-1 and 
n division and square root operations respectively. 
Considering nearly 30 times more hardware cost of the 
division and square root operations than that of addition 
and multiplication, the improvement would benefit itself 
on hardware cost. Figure 2 demonstrates the double 
precision simulation of the MMSE-VBLAST with the 
original formulation versus double precision improved 
formulation for the case of a 2x2 and 4x4 MIMO systems 
using BPSK modulation. It clearly reveals that the original 
2x2 and 4x4 MMSE-VBLAST systems and equivalent 
improved MMSE-VBLAST system have the same 
performance. 
 
4.2. 3-Sigma Automatic Gain Control 
 

This section presents the automatic gain control (AGC) 
method involved in the project called the 3-sigma method 
[8]. Here, sigma (σ) represents the statistical term for the 
Standard Deviation of a distribution. It is known as the 
"68-95-99.7 rule" or the "empirical rule" [9] that 99.7% of 
the input data should fall in the range (-3σ, 3σ) for normal 
distribution. As the input data of MMSE-VBLAST 
detector follows a normal distribution with zero mean, and 
assuming a system precision has been chosen,  
E[r]=0 and E[s2]=1, σ2 can be derived as follows: 
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Taking into account of the "68-95-99.7 rule", the main 
point of this method is to scale the input signal to cover 
the range(-3σ, 3σ), which is called dynamic range [10] in 
hardware. Without considering the integer and fractional 
part of the input signal, if the hardware precision is 
precision, the largest range can be expressed by this 
precision is (-2precision-1, 2precision-1), then the system desired 
sigma value would be σD=(2precision-1)/6. The channel 
model of the system has 0 mean and 1 variance, so the 
variance of the real and imagery part of the channel matrix 
is 1/2, hence, the scaled factor based on σ can be obtained 
from the desired σ of r divided the actual σ, the factor for 
real and imagery part is the same which is: 

3 26 2
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1 2

1precisio

n

n

σλ
σ
−=

+
                          (11) 



Multiplying this factor, r and H can be scaled into the 
system dynamic range. The method scales the input signal 
to suit the system bandwidth from a statistical point of 
view. Meanwhile, on the aim of scaling input data to the 
range is (-2precision-1, 2precision-1), the computing process 
could be further optimized by avoiding the consideration 
of which part is integer or fractional.  
 
4.3. Fixed Point Arithmetic 
 
 Figure 3 shows fixed point simulation results for 2x2 
MMSE-VBLAST MIMO system with BPSK symbol 
modulation using the 3-sigma AGC method. 

 

 
Figure 3. 2x2 MMSE-VBLAST Fixed Point 

Performance with the 3-sigma AGC method 
 

Here, the system is quantized from 10 bit to 20 bit, and 
16 bit precision is shown to satisfy the desired system 
performance. Although the 16 bit precision is incapable of 
fully matching the performance of the double precision 
floating point implementation under a SNR equal to 15dB, 
the BER performance is approximately equal to 10-3.3 
which is considered acceptable. 

using the 3-sigma method, Figure 4 shows the 
simulation result of a 4x4 MMSE-VBLAST fixed point 
implementation with SNRs ranging from -10dB to 15 dB 
with BPSK symbol modulation. 

 

 
Figure 4. MMSE-VBLAST Fixed Point 

Performance using 3-sigma method in BPSK, the 
system contains 4 transmit antennas and 4 receive 

antennas 
Here again, although the 23-bit precision cannot 

perfectly match the double precision floating point 
implementation when the SNR is higher than 15 dB, the 
BER performance of 23-bit is lower than 10-3 and can thus 
be acceptable. It is finally worth mentioning that with 
respect to instances where input data follow a Gaussian 
distribution and the performance of the 3-sigma method is 
not deemed satisfactory, 4-sigma or even 6-sigma could 
be used instead.  
 

5. System Simulation and Implementation 
 

The double precision floating point and fixed point 
simulations for the improved 2x2 and 4x4 MMSE-
VBLAST systems have been given above. Further 
discusses of the hardware architecture prototyping using 
Xilinx System Generator tool shows Xilinx FPGA 
hardware design at the Simulink level. 
 
5.1. 2x2 System Architecture 
 

The previous analysis of the double precision floating 
point and fixed point simulation for the improved 2x2 
MMSE-VBLAST shows that 16-bit precision performs 
very closely to double precision floating point. 
Partitioning the 2x2 MMSE-VBLAST program between 
MATLAB and simulated FPGA parts is the first step 
towards implementing the system in Xilinx System 
Generator. Figure 5 pictures a simple and intuitionistic 
approach to partitioning handling.  
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Figure 5. Partitioning of the 2x2 MMSE-VBLAST 

between MATLAB and the System Generator 

Functionally, MATLAB performs the AGC block once 
per frame and sends the scaled input data to Gatewayin 
port (see Figure 6). The System Generator executes two 
iterations of the VBLAST algorithms in a pipelined 
fashion, both of which include G matrix computation, 
nulling vector computation and decision. The signal is 
then sent out from the Gatewayout port for output. Figure 
6 shows the blocks diagram of the complete System 
Generator implementation of 2x2 MMSE-VBLAST 
detector.  

Figure 6. System Generator block diagram of 2x2 
MMSE-VBLAST 

5.2. 4x4 System Architecture by Rapid 
Prototyping 
 

Figure 7 shows the block diagram of the System 
Generator implementation of a 4x4 MMSE-VBLAST 
MIMO detector. The input signal r and H are scaled by 3-
sigma AGC and quantized as 24 bit signed integers. AGC 
block is performed once per frame in Simulink, while 
Xilinx FPGA blocks executes 4 iterations of the 
estimation, all of which contain G matrix computation, 
Cholesky decomposition, triangular inversion, nulling 
vector computation, minimum search and decision. 
Though the Cholesky decomposition and triangular 
inversion cannot be avoided in 4x4 system, an improved 
solution has been proposed previously. Functions of 
different blocks of the design are described below. 

 
Figure 7. System Generator block diagram of 4x4 

MMSE-VBLAST 

Level 1 to 4 Estimation: These blocks perform the 
signal estimation for each iteration, where the channel 
number checked is 4, 3, 2 and 1 respectively. 

Cholesky decomposition: Based on (7), the elements of 
Cholesky decomposition can be obtained sequentially. It 
employs the inherent parallelism present in the algorithm, 
and its deterministic structure makes the pipelining of the 
algorithm feasible. Figure 8 shows the System Generator 
block diagram of the Cholesky decomposition. 

 
Figure 8. System Generator Implementation of 

Cholesky Decomposition 
Figure 9 presents the time diagram of the Cholesky 

decomposition algorithm on System Generator. It shows 
how different parts of pipeline stages of the algorithm start 



processing valid data in sequence. For the sake of 
simplicity, information about latency of each stage is not 
depicted.  

( )1
ˆ tSchol

( )1tr

( )2tr

( )3tr

( )2
ˆ tSchol

( )3
ˆ tSchol

 
Figure 9. Pipeline stages in the case of 4x4 MMSE-

VBLAST MIMO detector 

The detection process is specified for three time 
instants to show how symbols are being outputted from 
the Cholesky decomposition block at a constant rate. The 
white area indicates the different pipeline stage parts 
waiting for valid data to fill in. The green area denotes all 
the filled pipeline stages and symbols in parallel 
processing for different time instants. In this way, once the 
pipeline stages are filled, all blocks of the Cholesky 
decomposition are active every clock cycle and perform at 
full speed. 

Triangular Inversion: Figure 10 pictures the System 
Generator Implementation block diagram of the triangular 
inversion based on back substitution. Here all elements 
are concurrently computed. Minimum search is 
constructed by 4 Muxes to compare the minimum norms 
of all required channels and indicate the index of the 
channel number. 

 
Figure 10. System Generator Implementation of 

Triangular Inversion 

5.3. Hardware Implementation Results 
 

The MMSE-VBLAST has been prototyped for 2x2 
and 4x4 system with BPSK modulation. The System 
Generator design has been compiled into FPGA hardware 
in the form of Verilog. The latter was in turn synthesized 
into FPGA configurations using Xilinx ISE tool. 
Functional simulation is performed at the System 
Generator level, and the Verilog level using ModelSim. 
The Xilinx ISE synthesis report gives the FPGA resource 
usage (area) and speed information, which is reported in 
Table 2 for 2x2 and 4x4 MMSE-VBLAST MIMO 
detectors using BPSK modulation, on a Xilinx Virtex4 
VC4VSX55 FPGA chip. Note that the resource usage is 
also estimated by the Resource Estimator blockset of the 
Xilinx System Generator tool, and the results are the same 
as those reported by Xilinx ISE tool. 

In the 2x2 system, a total of 56 adders, 77 registers and 
3 comparators are used. The minimum clock period is 
5.890ns and the maximum frequency is 169.776MHz. In 
the 4x4 system, however, the minimum period is 11.539ns 
and the maximum frequency is 86.657 MHz. 

Comparing the 2x2 and the 4x4 systems, it can find out 
that the 4x4 uses over 10 times the amount of slices, 6 
times the amount of flip-flops, 4 times the amount of 



DPS48s and 13 times the LUTs resources of the2x2 
system. This is due to the fact that the 4x4 system has to 
compute Cholesky decomposition and triangular inversion 
explicitly, which is costly in terms of resources. The 
channel bandwidth of currently designed WCDMA and 
CDMA 2000 systems are up to 20MHz [11]. For a 4x4 
MIMO detector, the designed clock frequency is 80MHz, 
which means 4 clock cycles are used to process a set of 
data. The maximum frequency of 4x4 system showed in 
Table 2 indicates that the design can meet the system 
demands, and so is the 2x2 case.  

Table 2. Estimated FPGA Resource Use of 2x2 and 

4x4 MMSE-VBLAST 

VC4VSX55 2x2 % 4x4 % Total 
Number of Slices 1,792 7% 21,836 88% 24,576 
Number of Slice 

Flip Flops 
3,183 6% 18,373 37% 49,152 

Number of 4 input 
LUTs 

2,713 5% 33,512 68% 49,152 

Number of bonded 
IOBs 

273 42% 593 92% 640 

Number of DSP48s 104 20% 426 83% 512 
Number of 

GCLKs 
1 3% 1 3% 32 

 

6. Conclusion and future work 
 
An FPGA implementation of the improved MMSE-

VBLAST using rapid prototyping methodology has been 
presented in this paper. The advantages of the rapid 
prototyping methodology are the flexibility that provides 
to analyze in detail the hardware implementation of the 
algorithm while designing. For this purpose, the MMSE-
VBLAST algorithm has been chosen as a candidate to 
optimize on hardware. This resulted in an improved 
implementation of the algorithm which reduces its 
complexity. FPGA hardware implementations have then 
been achieved albeit in simulation. 

The future work would be real hardware 
implementation of the 2x2 and 4x4 MMSE-VBLAST 
algorithm on an FPGA board. This implementation should 
perform further improvements on the hardware to exploit 
the hardware resources fully and maximise the throughput. 

 
Acknowledgement 
 

I express my grateful thanks to Khaled Benkrid and 
John Thompson for their valuable guidance. My thanks 
also extend to my current supervisors John McAllister and 
Roger Woods for their great advices on the part of 
complexity analysis. 
 
7. References 

 
[1] P. W. Wolniansky, G. J. Foschini, G. D. Golden et al., "V-

BLAST: an architecture for realizing very high data rates 
over the rich-scattering wireless channel." pp. 295-300. 

[2] E. Biglieri, MIMO wireless communications, Cambridge: 
Cambridge University Press, 2007. 

[3] H. Thomas, F. Andreas, G. Holger et al., “Real-time signal 
processing for multiantenna systems: algorithms, 
optimization, and implementation on an experimental test-
bed,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1, 
pp. 136-136. 

[4] R. M. Rao, Z. Wiejun, S. Lang et al., “Multi-antenna 
testbeds for research and education in wireless 
communications,” Communications Magazine, IEEE, vol. 
42, no. 12, pp. 72-81, 2004. 

[5] P. Murphy, F. Lou, A. Sabharwal et al., "An FPGA based 
rapid prototyping platform for MIMO systems." pp. 900-
904 Vol.1. 

[6] C. Mehlfuhrer, M. Rupp, F. Kaltenberger et al., "A 
scalable rapid prototyping system for real-time MIMO 
OFDM transmissions." p. 7 pp. 

[7] G. H. Golub, and C. F. Van Loan, Matrix computations, 
3rd ed., Baltimore: Johns Hopkins University Press, 1996. 

[8] Mini-circuits. 
"http://staff.ee.sun.ac.za/deswardt/RF/General/Application
%20Note%20Amplifier.htm." 

[9] Wikipedia. "Normal distribution, 
http://en.wikipedia.org/wiki/Gaussian_distribution." 

[10] B. Mulgrew, P. M. Grant, and J. Thompson, Digital signal 
processing : concepts and applications, 2nd ed., 
Houndmills, Basingstoke, Hampshire [Eng.] ; New York, 
N.Y.: Palgrave Macmillan, 2003. 

[11] N. Parameshwar, and R. Rajagopalan, "A comparative 
study of cdma2000 and W-CDMA." pp. 15.1-15.9. 

 
 

 
 

                       


