

Rapid Prototyping of the Improved Cholesky Decomposition

based MIMO Detector

Xuezheng Chu
The Institute of Electronics,

Communications and
Information Technology,

Queens University Belfast,
xchu01@qub.ac.uk

Dr Khaled Benkrid

School of Electronics and
Engineering, The University

of Edinburgh,UK
K.Benkrid@ed.ac.uk

Dr John Thompson

School of Electronics and
Engineering, The University

of Edinburgh,UK
John.Thompson@ed.ac.uk

Abstract
Multiple Input Multiple Output (MIMO) has gradually
become the most promising technique for the next
generation wireless telecommunications systems. MMSE-
VBLAST has a performance close to Maximum Likelihood
with considerably low complexity. The improvements in
the algorithm results in substantial computation and
hence hardware savings as it avoids the hardware cost
expensive square root and division operations. This
improvement decreases the computational complexity of
MMSE-VBLAST with no performance penalty compared
to previous MMSE-VBLAST algorithmic. This has finally
be validated for 2x2 and 4x4 MIMO systems using a rapid
prototyping methodology that starts with full software
formulation in MATLAB and ends with an optimized
equivalent FPGA hardware implementation.

1. Introduction

In the last ten years, the use of MIMO technology in
wireless links has been extensively studied, mostly from
the theoretical point of view, showing that significant
capacity increases could be achieved under certain
conditions by using multiple antennas at both transmitter
and receiver. Vertical Bell Laboratories Layered Space
Time coding (V-BLAST) [1] is a MIMO communication
architecture proposed by Bell laboratories. For the
uncoded MIMO case in the V-BLAST receiver, the
Minimum Mean Square Error (MMSE) algorithm is
widely considered as an efficient approach to obtain near-
to -ML performance with reduced complexity.

 Nowadays, the prototyping of those multiple-antenna
systems has become increasingly important to verify the
enhancements advanced by analytical results. However, in
most cases, the target platform is rarely used as feedback
to investigate ways of improving the algorithm. The main
aim of the rapid prototyping methodology is to be able to
verify the improvements from the algorithmic point of
view using real-time prototype.

The paper starts from the generic MIMO system and
presents the rapid prototyping methodology, adopted in
the work, and shows how it can be applied to wireless
MIMO system development. It then focuses on Cholesky
decomposition and Triangular inversion algorithms,
provides an improved solution and compares it with
alternative techniques. Then, the paper analyzes two
specific MIMO systems, namely 2x2 and 4x4 MMSE-
VBLAST using the proposed solution, with simulation
results provided. The work finally analyzes fixed point
simulation of our solutions with 3-sigma automatic gain
control (AGC). The prototyping of improved MMSE-
VBLAST solution is presented at last. This validates the
claimed efficiency of the improved solution.

2. MIMO System Model

An MxN MIMO system model is depicted in Figure 1.

Figure 1. MIMO channel model

M, N represents the number of transmitter and receiver
antennas, and s1, s2 … sM, s1

’, s2
’ … sN

’, are the sub signal
flows of transmitter and receiver respectively. The model
can be formalized as:

= +r Hs n (1)
where r= [r1, r2, …, rN]T denotes the received signal N-

vector, H is MxN signal matrix, s= [s1, s2, …, sM]T denotes
the transmitted signal M-vector, and n= [n1, n2, …, nN]T
represents N-vector of independent and identically
distributed (i.i.d) complex additive white Gaussian noise
(AWGN) samples with variance N0 [2].

3. Rapid Prototyping Approach

The rapid prototyping methodology used in this work is

actually a rapid functional validation method. It uses a
MATLAB simulink environment (the Xilinx System
Generator in this case) to prototype the system
architecture and generates the corresponding relevant
HDL files. Then, ModelSim and/or any vendor-specific
simulation tool, e.g. Xilinx ISE in this case, are used to
validate the functionality of the hardware produced. The
latter should replicate the simulation results produced by
the MATLAB-Simulink environment, and serves only as a
checking/verification step. This rapid prototyping method
saves considerable time especially for large-scale complex
systems, and is thereby much more effective.

Using this rapid prototyping methodology allows for a
high-level design to be quickly translated from algorithm
design into system architecture. The researcher can
initially realize a research idea or standard in the form of
an algorithm written in software. The latter can then be
used as a gold reference. From an implementation
prospect, the use of this rapid prototyping methodology
has the advantage of identifying the complexity issue and
related costs in early development times. From the design
prospect, this methodology has the advantage of quickly
identifying bottlenecks, trade-offs between different
design parameters, and ultimately identifying the
necessary trade-offs for optimized solutions.

Several prototyping systems have been developed in
both academic research and professional development for
MIMO systems. For example, a single-carrier MIMO
system is described in [3], [4] and [5], and a MIMO-
OFDM system is implemented in [6]. All of them focus on
system integration and realize wireless channel testing.
However, these are not suitable for rapid validation and of
novel MIMO detection algorithms. The rapid prototyping
method used in this work mainly concentrates on the
signal processing side of MIMO systems and allow for the
rapid validation of complex MIMO detection algorithms
to find out the system bottlenecks in early in the
development process.

The working process is described as follows. Firstly,
the MATLAB language is used to simulate the complete
MIMO system including transmitter, different MIMO
algorithms and receiver, in double precision. The system’s
fixed point simulation is then deduced to decide on the
precision needed for hardware implementation (as double
precision and floating point arithmetic in general is
generally prohibitively expensive in hardware). Automatic
gain control should be used at this stage in order to
normalize input data. Complicated mathematical analysis
should be substituted by basic mathematical operations
(i.e. add/sub, multiply, shift etc.), and exponent and
logarithm operations should be replaced by their
respective adequate hardware approximation functions e.g.
Taylor and Maclaurin series. Performance results for

different fixed-point precisions are then compared with
the gold reference double precision simulation results.
The fixed point precision that is closest to the double
precision performance (according to a developer criterion)
is then chosen. Trying to intensive fixed point simulation
to each mathematical unit of the system, and finding the
optimal fixed point precision to satisfy the overall
precision requirement can save large amounts of hardware
and leads to quicker implementations. The algorithm is
then prototyped in Xilinx System Generator (a MATLAB-
Simulink plug-in) and then compiled and synthesized to
FPGA hardware. No hardware description language e.g.
Verilog HDL/VHDL, is required to capture the system
under study in System Generator as this is a graphical user
environment with building blocks (hard or soft) linked in a
data flow. Hardware optimized for a particular FPGA
family (the target family) is generated automatically from
such descriptions by System Generator, in the form of
VHDL or Verilog. The latter is then synthesized, mapped
and routed using Xilinx’s ISE tools. These tools generate
a number of reports which help us analyze the resource
usage and timing performance of the resulting hardware
configurations. Bottlenecks can arise at this stage of the
development process.

This methodology has been used in this work in order
to rapidly prototype MIMO detection algorithms in
hardware. The methodology is distinguished by its speed,
early functional validation, and fast route to hardware
implementation.

4. Improved Cholesky Decomposition

4.1. Improved algorithm

With Cholesky Decomposition and Triangular Matrix
Inversion [7], the i-th iteration of MMSE-VBLAST
becomes as follows:

()
()

2

2

cholesky

triangurlarInv()

arg min

ˆ

H
i i i

i i

i i

H
i i i

j i
j

H
i j i

i
i

i j

σ= +

=
=

=

=

=

=

G H H I

L G

q L

Q q q

k Q

w Q H

w r
s

w H (2)
where Gi is the G matrix at iteration i, Li is the Cholesky
Decomposition of Gi and its triangular inversion is
denoted by qi. Multiplying qi and the relevenet complex
conjugate transpose of qi

H, the pseudo inversion of Gi can
then be transformed to Qi, Next, the nulling vector wi
calculated as the j-th row of Qi, and the j-th element with

the minimum norm in Qi is the strongest channel to be
estimated in the current iteration. The estimated transmit
symbol can be computed byˆis to match the closest multi-

dimensional constellation point. After nulling the signal of
the j-th channel from the received signal and cancelling
the j-th column from the channel matrix H, the computing
steps into the (i+1)-th iteration.

Taking notice of the estimated symbol
îs , the nulling

vector wi appears in both numerator and denominator, so
any scale of wi will not take effect of the estimated
symbol. This is key to the algorithm improvement
proposed here. Indeed, as the Qi coming from the
multiplication of the inverse of two triangular matrices is
actually the Cholesky decomposition of a positive definite
Hermitian matrix Gi, several square root and division
operations can be optimized away, which reduces the
necessary hardware implementation resources drastically.

The following briefly describe the computing of the 4th
iteration of a 4x4 matrix case, in order to demonstrate the
improvement claimed here.

G matrix is assumed as, 11 12 13 14

21 22 23 242

31 32 33 34

41 42 43 44

H

A A A A

A A A A

A A A A

A A A A

σ

 
 
 + =
 
 
 

H H I

The Cholesky decomposition of G is then:

()

11

11

21 22

11 22

31 32 33

11 22 33

4341 42 44

11 22 33 44

0 0 0

0 0

cholesky
0

L G

 
 
 
 
 
 = =  
 
 
 
 
 
 

A

A

A B

A B

A B C

A B C

CA B D

A B C D (3)
which has the same factor in each column and can be
factorized as:

11

11

2221 22

31 32 33

41 42 43 44 33

44

1
0 0 0

10 0 0 0 0 0
0 0

0 1
0 0 0

1
0 0 0

A

A

BA B

A B C

A B C D C

D

 
 
 
  
  
  = ×  
  
  
 
 
 
 

L

 (4)

where A is the relevant element of G matrix, while B, C, D
are new elements computed by Cholesky decomposition.
The complex conjugate transpose of L then can be
factorized as:

11

11 12 13 14

22 22 23 24

33 34

33 44

44

1
0 0 0

1
0 0 0

0

0 01
0 0 0

0 0 0

1
0 0 0

H

A

A A A A

B B B B

C C

C D

D

 
 
 
   
   
   = ×   
   
   
 
 
 
 

L

 (5)

Hence, we can easily deduce that:

() 11

1

11 12 13 14 11

22 23 24 22

33 34 33

44 44

1

11

21 22

31 32 33

41 42 43 44

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0

0

H

A A A A A

B B B B

C C C

D D

A

A B

A B C

A B C D

−−

−

−

=

   
   
   = ×
   
   
   

 
 
 ×
 
 
 

Q L L
 (6)

As a result, the original squared root operations have

been eliminated. Based on the Cholesky Decomposition
algorithm, the relevant elements of the triangular matrix
can be given by the following expressions

2 4 2

11 11 22 11 22 33

1 1 1, ,ij ij ij ij ij ijA A B A B C
B B C C D D= = = (7)

So the Q can be factorized as,
1

1111 21 31 41

11 2222 32 42

11 22 3333 43

11 22 33 4444

1

11

21 22

31 32 33

41 42 43 44

0 0 0' ' '

0 0 00 ' '

0 0 00 0 '

0 0 00 0 0

0 0 0

0 0

0

AA A A A

A BB B B

A B CC C

A B C DD

A

A B

A B C

A B C D

−

−

  
  
  = ×
  
  

   

 
 
 ×
 
 
 

Q (8)

where (.)’ denotes the transpose value of corresponding

element, and ()⋅ denotes the denominator of the relevant
expression. At this stage, the Cholesky decomposition has
been reformulated to become the product of the inverse of
two triangular matrixes (each is the transpose the other)
and one diagonal matrix, with no need for the square root
and division operations. The only remaining computation
is the inversion of the triangular matrix.
Based on the triangular matrix inversion algorithm
mentioned in [7], the inverse of the two triangular
transpose matrices are also transpose, and the inversion of
the lower and upper triangular matrix is also a lower and
upper triangular matrix, respectively. Therefore, on the
assumption of the lower triangular matrix in (8), the
inversion of triangular matrix can be basically computed
by back substitution as the following form,

11

21 221

31 32 33

41 42 43 44

0 0 0

0 0

0

X

X X

X X X

X X X X

−

 
 
 = =
 
 
 

q p (9)

From the formula deduction, each element of q

multiplies the common factor of11 22 33 44A B C D , saving the
division operations. As a result, the pseudo matrix
inversion of G reduces to a multiplication of three
matrices without any expensive square root and division
operations. It should be noted at this stage that the
technique presented above for the case of a 4x4 system is
applicable to any NxN system. From (7) each element of
the Cholesky decompostion is dealt with one by one,
which can be pipelined in hardware in order to increase
throughput. In the back substitution triangular inversion,
however, there is no correlation between the computations
of each element and what only need is the elements
factorized by Cholesky decomposition, which means that
we can employ instruction parallelism to speed up the
computation.

Table 1. Operation complexity of the two algorithms

Algorithms Cholesky
Decomposition

Improved Cholesky
Decomposition

Addition 3 21 1

2 2
n n n− −

3 21 1

2 2
n n n− −

Multiplication
3 22 2

3 3
n n n+ −

3 22 3 1
2

3 2 6
n n n+ − −

Division 2 1n − 0

Square Root n 0

Figure 2. BER Performance for our improved MMSE-
VBLAST VS original MMSE-VBLAST formulation, for
2x2 and 4x4 MIMO systems with BPSK modulation

Table 1 illustrates the addition, multiplication, division,
square root operation for each of the improved Cholesky
Decomposition and the original one, supposing nxn
squared target matrix here. The operation complexity is
O(n3) for both of them. The improved one use 1/2n2
additional multiplications though, it totally frees 2n-1 and
n division and square root operations respectively.
Considering nearly 30 times more hardware cost of the
division and square root operations than that of addition
and multiplication, the improvement would benefit itself
on hardware cost. Figure 2 demonstrates the double
precision simulation of the MMSE-VBLAST with the
original formulation versus double precision improved
formulation for the case of a 2x2 and 4x4 MIMO systems
using BPSK modulation. It clearly reveals that the original
2x2 and 4x4 MMSE-VBLAST systems and equivalent
improved MMSE-VBLAST system have the same
performance.

4.2. 3-Sigma Automatic Gain Control

This section presents the automatic gain control (AGC)
method involved in the project called the 3-sigma method
[8]. Here, sigma (σ) represents the statistical term for the
Standard Deviation of a distribution. It is known as the
"68-95-99.7 rule" or the "empirical rule" [9] that 99.7% of
the input data should fall in the range (-3σ, 3σ) for normal
distribution. As the input data of MMSE-VBLAST
detector follows a normal distribution with zero mean, and
assuming a system precision has been chosen,
E[r]=0 and E[s2]=1, σ2 can be derived as follows:

{ } { }

{ } { }

2 2 2 2 2 2 2

2
22

2
22

Re Re
2

Im Im
2

r n

n

n

E h E E h

E h

E h

σ σ

σ

σ

= = + = +          

   = +  

   = +  

r s n

r

r
 (10)

Taking into account of the "68-95-99.7 rule", the main
point of this method is to scale the input signal to cover
the range(-3σ, 3σ), which is called dynamic range [10] in
hardware. Without considering the integer and fractional
part of the input signal, if the hardware precision is
precision, the largest range can be expressed by this
precision is (-2precision-1, 2precision-1), then the system desired
sigma value would be σD=(2precision-1)/6. The channel
model of the system has 0 mean and 1 variance, so the
variance of the real and imagery part of the channel matrix
is 1/2, hence, the scaled factor based on σ can be obtained
from the desired σ of r divided the actual σ, the factor for
real and imagery part is the same which is:

3 26 2

2

1 2

1precisio

n

n

σλ
σ
−=

+
 (11)

Multiplying this factor, r and H can be scaled into the
system dynamic range. The method scales the input signal
to suit the system bandwidth from a statistical point of
view. Meanwhile, on the aim of scaling input data to the
range is (-2precision-1, 2precision-1), the computing process
could be further optimized by avoiding the consideration
of which part is integer or fractional.

4.3. Fixed Point Arithmetic

 Figure 3 shows fixed point simulation results for 2x2
MMSE-VBLAST MIMO system with BPSK symbol
modulation using the 3-sigma AGC method.

Figure 3. 2x2 MMSE-VBLAST Fixed Point

Performance with the 3-sigma AGC method

Here, the system is quantized from 10 bit to 20 bit, and
16 bit precision is shown to satisfy the desired system
performance. Although the 16 bit precision is incapable of
fully matching the performance of the double precision
floating point implementation under a SNR equal to 15dB,
the BER performance is approximately equal to 10-3.3
which is considered acceptable.

using the 3-sigma method, Figure 4 shows the
simulation result of a 4x4 MMSE-VBLAST fixed point
implementation with SNRs ranging from -10dB to 15 dB
with BPSK symbol modulation.

Figure 4. MMSE-VBLAST Fixed Point

Performance using 3-sigma method in BPSK, the
system contains 4 transmit antennas and 4 receive

antennas
Here again, although the 23-bit precision cannot

perfectly match the double precision floating point
implementation when the SNR is higher than 15 dB, the
BER performance of 23-bit is lower than 10-3 and can thus
be acceptable. It is finally worth mentioning that with
respect to instances where input data follow a Gaussian
distribution and the performance of the 3-sigma method is
not deemed satisfactory, 4-sigma or even 6-sigma could
be used instead.

5. System Simulation and Implementation

The double precision floating point and fixed point
simulations for the improved 2x2 and 4x4 MMSE-
VBLAST systems have been given above. Further
discusses of the hardware architecture prototyping using
Xilinx System Generator tool shows Xilinx FPGA
hardware design at the Simulink level.

5.1. 2x2 System Architecture

The previous analysis of the double precision floating
point and fixed point simulation for the improved 2x2
MMSE-VBLAST shows that 16-bit precision performs
very closely to double precision floating point.
Partitioning the 2x2 MMSE-VBLAST program between
MATLAB and simulated FPGA parts is the first step
towards implementing the system in Xilinx System
Generator. Figure 5 pictures a simple and intuitionistic
approach to partitioning handling.

H

r

2
nσ

r%

H%

2
nσ%

ŝ

Figure 5. Partitioning of the 2x2 MMSE-VBLAST

between MATLAB and the System Generator

Functionally, MATLAB performs the AGC block once
per frame and sends the scaled input data to Gatewayin
port (see Figure 6). The System Generator executes two
iterations of the VBLAST algorithms in a pipelined
fashion, both of which include G matrix computation,
nulling vector computation and decision. The signal is
then sent out from the Gatewayout port for output. Figure
6 shows the blocks diagram of the complete System
Generator implementation of 2x2 MMSE-VBLAST
detector.

Figure 6. System Generator block diagram of 2x2
MMSE-VBLAST

5.2. 4x4 System Architecture by Rapid
Prototyping

Figure 7 shows the block diagram of the System
Generator implementation of a 4x4 MMSE-VBLAST
MIMO detector. The input signal r and H are scaled by 3-
sigma AGC and quantized as 24 bit signed integers. AGC
block is performed once per frame in Simulink, while
Xilinx FPGA blocks executes 4 iterations of the
estimation, all of which contain G matrix computation,
Cholesky decomposition, triangular inversion, nulling
vector computation, minimum search and decision.
Though the Cholesky decomposition and triangular
inversion cannot be avoided in 4x4 system, an improved
solution has been proposed previously. Functions of
different blocks of the design are described below.

Figure 7. System Generator block diagram of 4x4

MMSE-VBLAST

Level 1 to 4 Estimation: These blocks perform the
signal estimation for each iteration, where the channel
number checked is 4, 3, 2 and 1 respectively.

Cholesky decomposition: Based on (7), the elements of
Cholesky decomposition can be obtained sequentially. It
employs the inherent parallelism present in the algorithm,
and its deterministic structure makes the pipelining of the
algorithm feasible. Figure 8 shows the System Generator
block diagram of the Cholesky decomposition.

Figure 8. System Generator Implementation of

Cholesky Decomposition
Figure 9 presents the time diagram of the Cholesky

decomposition algorithm on System Generator. It shows
how different parts of pipeline stages of the algorithm start

processing valid data in sequence. For the sake of
simplicity, information about latency of each stage is not
depicted.

()1
ˆ tSchol

()1tr

()2tr

()3tr

()2
ˆ tSchol

()3
ˆ tSchol

Figure 9. Pipeline stages in the case of 4x4 MMSE-

VBLAST MIMO detector

The detection process is specified for three time
instants to show how symbols are being outputted from
the Cholesky decomposition block at a constant rate. The
white area indicates the different pipeline stage parts
waiting for valid data to fill in. The green area denotes all
the filled pipeline stages and symbols in parallel
processing for different time instants. In this way, once the
pipeline stages are filled, all blocks of the Cholesky
decomposition are active every clock cycle and perform at
full speed.

Triangular Inversion: Figure 10 pictures the System
Generator Implementation block diagram of the triangular
inversion based on back substitution. Here all elements
are concurrently computed. Minimum search is
constructed by 4 Muxes to compare the minimum norms
of all required channels and indicate the index of the
channel number.

Figure 10. System Generator Implementation of

Triangular Inversion

5.3. Hardware Implementation Results

The MMSE-VBLAST has been prototyped for 2x2
and 4x4 system with BPSK modulation. The System
Generator design has been compiled into FPGA hardware
in the form of Verilog. The latter was in turn synthesized
into FPGA configurations using Xilinx ISE tool.
Functional simulation is performed at the System
Generator level, and the Verilog level using ModelSim.
The Xilinx ISE synthesis report gives the FPGA resource
usage (area) and speed information, which is reported in
Table 2 for 2x2 and 4x4 MMSE-VBLAST MIMO
detectors using BPSK modulation, on a Xilinx Virtex4
VC4VSX55 FPGA chip. Note that the resource usage is
also estimated by the Resource Estimator blockset of the
Xilinx System Generator tool, and the results are the same
as those reported by Xilinx ISE tool.

In the 2x2 system, a total of 56 adders, 77 registers and
3 comparators are used. The minimum clock period is
5.890ns and the maximum frequency is 169.776MHz. In
the 4x4 system, however, the minimum period is 11.539ns
and the maximum frequency is 86.657 MHz.

Comparing the 2x2 and the 4x4 systems, it can find out
that the 4x4 uses over 10 times the amount of slices, 6
times the amount of flip-flops, 4 times the amount of

DPS48s and 13 times the LUTs resources of the2x2
system. This is due to the fact that the 4x4 system has to
compute Cholesky decomposition and triangular inversion
explicitly, which is costly in terms of resources. The
channel bandwidth of currently designed WCDMA and
CDMA 2000 systems are up to 20MHz [11]. For a 4x4
MIMO detector, the designed clock frequency is 80MHz,
which means 4 clock cycles are used to process a set of
data. The maximum frequency of 4x4 system showed in
Table 2 indicates that the design can meet the system
demands, and so is the 2x2 case.

Table 2. Estimated FPGA Resource Use of 2x2 and

4x4 MMSE-VBLAST

VC4VSX55 2x2 % 4x4 % Total
Number of Slices 1,792 7% 21,836 88% 24,576
Number of Slice

Flip Flops
3,183 6% 18,373 37% 49,152

Number of 4 input
LUTs

2,713 5% 33,512 68% 49,152

Number of bonded
IOBs

273 42% 593 92% 640

Number of DSP48s 104 20% 426 83% 512
Number of

GCLKs
1 3% 1 3% 32

6. Conclusion and future work

An FPGA implementation of the improved MMSE-

VBLAST using rapid prototyping methodology has been
presented in this paper. The advantages of the rapid
prototyping methodology are the flexibility that provides
to analyze in detail the hardware implementation of the
algorithm while designing. For this purpose, the MMSE-
VBLAST algorithm has been chosen as a candidate to
optimize on hardware. This resulted in an improved
implementation of the algorithm which reduces its
complexity. FPGA hardware implementations have then
been achieved albeit in simulation.

The future work would be real hardware
implementation of the 2x2 and 4x4 MMSE-VBLAST
algorithm on an FPGA board. This implementation should
perform further improvements on the hardware to exploit
the hardware resources fully and maximise the throughput.

Acknowledgement

I express my grateful thanks to Khaled Benkrid and
John Thompson for their valuable guidance. My thanks
also extend to my current supervisors John McAllister and
Roger Woods for their great advices on the part of
complexity analysis.

7. References

[1] P. W. Wolniansky, G. J. Foschini, G. D. Golden et al., "V-

BLAST: an architecture for realizing very high data rates
over the rich-scattering wireless channel." pp. 295-300.

[2] E. Biglieri, MIMO wireless communications, Cambridge:
Cambridge University Press, 2007.

[3] H. Thomas, F. Andreas, G. Holger et al., “Real-time signal
processing for multiantenna systems: algorithms,
optimization, and implementation on an experimental test-
bed,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1,
pp. 136-136.

[4] R. M. Rao, Z. Wiejun, S. Lang et al., “Multi-antenna
testbeds for research and education in wireless
communications,” Communications Magazine, IEEE, vol.
42, no. 12, pp. 72-81, 2004.

[5] P. Murphy, F. Lou, A. Sabharwal et al., "An FPGA based
rapid prototyping platform for MIMO systems." pp. 900-
904 Vol.1.

[6] C. Mehlfuhrer, M. Rupp, F. Kaltenberger et al., "A
scalable rapid prototyping system for real-time MIMO
OFDM transmissions." p. 7 pp.

[7] G. H. Golub, and C. F. Van Loan, Matrix computations,
3rd ed., Baltimore: Johns Hopkins University Press, 1996.

[8] Mini-circuits.
"http://staff.ee.sun.ac.za/deswardt/RF/General/Application
%20Note%20Amplifier.htm."

[9] Wikipedia. "Normal distribution,
http://en.wikipedia.org/wiki/Gaussian_distribution."

[10] B. Mulgrew, P. M. Grant, and J. Thompson, Digital signal
processing : concepts and applications, 2nd ed.,
Houndmills, Basingstoke, Hampshire [Eng.] ; New York,
N.Y.: Palgrave Macmillan, 2003.

[11] N. Parameshwar, and R. Rajagopalan, "A comparative
study of cdma2000 and W-CDMA." pp. 15.1-15.9.

