
A Parameterisable and Scalable Smith-Waterman Algorithm  
Implementation on CUDA-compatible GPUs 
Cheng Ling1, Khaled Benkrid1 and Tsuyoshi Hamada2 

1Institute for Integrated Micro and Nano Systems, Joint Research Institute for Integrated Systems, 

The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JL, UK 
2Faculty of Engineering, Department of Computer and Information Sciences, 

Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan 
1C.Ling@ed.ac.uk, 1K.Benkrid@ed.ac.uk, 2hamada@cis.nagasaki-u.ac.jp 

 

 
Abstract—This paper describes a multi-threaded parallel 
design and implementation of the Smith-Waterman (SM) 
algorithm on compute unified device architecture 
(CUDA)-compatible graphic processing units (GPUs). A 
novel technique has been put forward to solve the 
restriction on the length of the query sequence in previous 
GPU implementations of the Smith-Waterman algorithm. 
The main reasons behind this limitation in previous GPU 
implementations were the finite size of local memory and 
number of threads per block. Our solution to this 
problem uses a divide and conquer approach to compute 
the alignment matrix involved in each pairwise sequence 
alignment, as it divides the entire matrix computation 
into multiple sub-matrices and allocates the available 
amount of threads and memory resources to each sub-
matrix iteratively. Intermediate data is stored in shared 
and global memory on the fly depending on the length of 
sequences in hand. The proposed technique resulted in up 
to 4.2 GCUPS (Giga Cell Updates per Second) 
performance when tested against the SWISS-PROT 
protein database, which is up to 15 times faster than a 
equivalent optimised CPU-only implementation running 
on a Pentium4 3.4GHz desktop computer. Moreover, our 
implementation can cope with any query or subject 
sequence size, unlike previously reported GPU 
implementations of the Smith-Waterman algorithm 
which makes it fully deployable in real world 
bioinformatics applications. 
 

1. INTRODUCTION 

 
Biological sequence alignment is a widely used 

operation in the field of bioinformatics and 
computational biology. It aims to find out whether two 
or more biological sequences are related or not. 
However, biological sequence alignment is also a 
computationally expensive application as its computing 
and memory requirements grow quadratically with the 
size of the databases. Given that the latter is growing 
exponentially year after year, the need for hardware 
acceleration is getting stronger [1].  

Graphics Processor Units (GPUs) have been 
proposed recently as a high performance and relatively 
low cost acceleration platform for biological sequence 
alignment [2]. Among the early attempts we can cite 
Liu’s OpenGL-based implementation of the Smith-
Waterman algorithm, reported in [3].  More recently, 
Manavski et al. [4] and Munekawa et al. [5] reported 
two different GPU implementations of the Smith-

Waterman algorithm using NVIDIA GPUs [6]. The 
former used a single thread to compute a complete 
pairwise alignment matrix, column by column serially, 
and harnessed many threads to compute the alignment 
matrices of different pairs in parallel. The latter 
implementation harnessed one batch threads (block) to 
compute a single alignment matrix in parallel, 
exploiting the fact that the computation of the matrix 
cells on each anti diagonal are independent of each 
other, and hence can be done in parallel. Both 
implementations used the compute unified device 
architecture (CUDA) API to program GPUs and 
targeted GPUs from NVIDIA [8]. These API functions 
have contributed greatly to the use of GPUs in general 
purpose computing, opening the way for a new field of 
computational study coined general-purpose 
computation GPU (or GPGPU) which aims at 
harnessing GPUs for a wide range of applications 
including scientific computing [7], computational 
geometry [8], image processing [9] and bioinformatics 
[2]. 

Compared with CPU-based implementations of the 
Smith-Waterman algorithm e.g. from Farrar [10], 
Manavski et al. [4] and Munekawa et al. [5] 
demonstrated good acceleration performance which 
runs from 2 to 30 times faster than any previous 
implementations on commodity hardware. However, 
both implementations have a serious limitation on the 
length of query sequences that their GPU 
implementations can cope with. Indeed, Munekawa et 
al. [5] is clearly stated that that query sequences should 
be shorter than 2048, because of the limitation in the 
maximum number of threads that could be defined in 
each block. Moreover, Manavski et al. [4] reports a 
similar limitation because of the limited size of the 
local memory. Such limitation renders these 
implementations useless in many real world 
applications where query sequences are far longer than 
2500 approximately. This paper presents a technique 
which overcomes the above limitation of previous 
implementations of the Smith-Waterman algorithm. 
The main idea behind this is to separate the 
computation of the alignment matrix into multiple parts 
if the number of threads and size of local memory are 
not sufficient, and allocate the available resources to 
each sub-matrix in turn.  



The remainder of the paper is organized as follows. 
First, relevant background on the Smith-Waterman 
algorithm is presented. Then, previous work in the area 
of GPU-based acceleration of biological sequence 
alignment is presented. After that, our novel GPU-
based implementation technique of the Smith-
Waterman algorithm is presented. A comparative 
evaluation of our implementation then follows before 
conclusions and ideas for future work are laid out. 

 

2. THE SMITH-WATERMAN ALGORITHM 

 
The Smith-Waterman algorithm [11] is dynamic 

programming algorithm which finds the best local 
alignment between two sequences. The optimal local 
alignment obtained by the algorithm is achieved in two 
stages. Firstly, an alignment matrix is calculated based 
on the correlation between the two sequence characters 
(e.g. protein amino acids, DNA base pairs). The 
optimal local alignment is found by finding the 
maximum element in the alignment matrix, which 
attaches a score to the degree of similarity between the 
two sequences, and tracing back the alignment matrix 
until a zero element is found.  
More specifically, let D denotes a database sequence of 
length m: 
D: 0 1 2 3 1...... md d d d d −  
Let Q denotes a query sequence of length n: 
Q: 0 1 2 3 1...... nq q q q q −  
Let ( , )i jW a b denotes the substitution scoring matrix 
which gives a score describing the likelihood of 
substitution between characters ai and bj.  
Let initG and extG denote penalties for opening a new 
gap and continuing an existing gap respectively. 
With the above, the alignment matrix computation of 
the Smith-Waterman algorithm is described by the 
following equations: 

1. , , 1 , 1max{ , }i j i j init i j extE H G E G− −= − −  
2. , 1, 1,max{ , }i j i j init i j extF H G F G− −= − −  
3. , , , 1, 1max{0, , , ( , )}i j i j i j i j i jH E F H W a b− −= +  

The values of ,i jH , ,i jE  and ,i jF  are defined as 0 if 
1i <  or 1j < .The gap penalty is called linear if 

initG = extG , otherwise, it is called affine. In our 
subsequent GPU implementation, we use a linear gap 
model, which means that the above equations can be 
summarised as: 

4. 
, 1 , 1 1, 1max{0, , , , ( , )}i j i j i j i j i jH H G H G H W a b− − − −= − − +   
 

From this equation, we observe that the value of ,i jH  
depends on the values of its upper neighbour, 1i jH − , 
left neighbour 1,i jH −  and left-upper 
neighbour 1, 1i jH − − , as shown in figure 1. 
 

 
Fig1. Data dependency of the Smith-Waterman dynamic 
programming algorithm 
 
The above operations are massively parallelisable since 
the anti diagonal elements of the alignment matrix are 
independent of each other, and hence can be computed 
in parallel. In addition, the computation of different 
alignment matrices between a query sequence and 
several subject sequences can be done in parallel too. 
Since GPUs have the ability to allocate thousands of 
parallel threads to a particular task, it is a very 
appealing acceleration platform for the Smith-
Waterman algorithm. Note finally that the trace back 
procedure will be done only for one or few subject 
sequences, the one(s) with the highest score, out of 
thousands or millions of subject sequences, and hence 
it is better achieved on the host CPU. The GPU 
parallelisation task is hence focused on the alignment 
matrices’ calculation. 
 

3. THE PROGRAMMING MODEL OF CUDA-COMPATIBLE 

GPUS 

 
CUDA (Compute Unified Device Architecture) is a 

parallel computing architecture developed by NVIDIA 
Corporation [6], which makes the computing engines 
of graphics processor units accessible to general 
purpose software developers through a standard 
programming language e.g. C, with an API to exploit 
the architecture parallelism. Like many-core CPUs, 
CUDA uses threads for parallel execution. However, 
whereas multi-core CPUs have only few threads 
running in parallel at any particular time, GPUs allow 
for thousands of parallel threads to run at the same time.  
The GPU used in our implementation is NVIDIA’s 
Geforce 8800GTX (see Figure 2) which has 16 Stream 
Multiprocessors (SMs), with each SM having eight 
Stream Processors (SPs) used as Arithmetic Logic 
Units (ALUs) with 8KB constant cache, 8KB texture 
cache and 16KB shared memory (see Figure 2). The 
shared memory can be read and written by any thread 
in a block assigned to a SM. In addition, each SP has 
its own registers (1024) and operates the same kernel 
code as the other SPs, but with different data sets. 
Access speed to shared memory is as fast as accessing 
SP registers as long as there are no bank conflicts [6]. 
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Fig2. Block architecture of NVIDIA’s Geforce 8800 GTX 
 
In addition to the above, a device memory offers global 
access to a larger (768 MB) but slower storage. Any 
thread in any SP can read from or write to any location 
in the global memory. Since computational results can 
be transferred back to CPU memory through it, global 
memory can be thought as a bridge which achieves 
communication between GPU and CPU.  

Local memory is allocated automatically if the size 
of variable required is bigger than the register size, and 
there is no keyword specified for it. It is not cached and 
cannot be accessed in a coalesced manner like global 
memory. Texture memory within each SM can be filled 
with data from the global memory. It acts like a cache, 
and so does constant memory, which means that they 
can speed up the fetch time of data. However, threads 
running in the SMs are restricted to read only access to 
these memories. The host CPU, on the other hand, does 
have write access to these memories. 

 

4. OUR SMITH-WATERMAN GPU IMPLEMENTATION  

 
Part of our proposed technique for the Smith-

Waterman GPU implementation draws from the 
experience of Liu’s parallelization strategy reported in 
[3] and the memory distribution scheme of Munekawa 
et al. reported in [5]. Before reporting the details of our 
novel technique, we first describe the two main 
parallelization strategies adopted for the GPU 
acceleration of the Smith-Waterman algorithm. 
Afterwards, we will illustrate our improved strategy 
which solves the problem of query size limitation 
reported in previous implementations.  
 
A. Parallelization Strategies 
 

Eqs.4 indicates that the computation of matrix cell 
,i jH just depends on the values of its upper 

neighbour , 1i jH − , left neighbour 1,i jH −  and its left-
upper neighbour 1, 1i jH − − , which means that the 
calculation of cells within each anti diagonal of 
alignment the matrix can be done in parallel.  
 
Obviously, for the computation of cells on the k-th anti 
diagonal, we need to record the cells on (k-1)-th anti 
diagonal and the cells on the (k-2)-th anti diagonal. For 
a query sequence of length n and a database subject 
sequence of length m, there are 1m n+ −  anti diagonals 
which have to be computed serially. Instead of storing 
all matrix cells, we just need to allocate memory for the 
storage of two anti diagonals. As illustrated in Figure 3, 
the computation of cells in the i-th row (i>1) depends 
on both the value stored in shared[i-1] and shared[i]. 
Moreover, shared[i] will be updated when the new H 
value is computed for the computation of the cells in 
the i-th row. Therefore, we use a register for each 
thread to store the cells on the (k-2)-th anti diagonal 
and shared memory space for the cells on the (k-1)-th 
anti diagonal. After computing all cells on the k-th anti 
diagonal, we use the cells on the (k-1)-th anti diagonal 
to update the content of registers and the cells on 
current k-th anti diagonal to update the content of 
shared memory for the computation of all cells on 
(k+1)-th anti diagonal. Another register defined in 
kernel for each thread is used to store and update the 
highest score of each row. Overall, one block of 
threads is responsible for computing one matrix, and 
each thread contained in it takes charge of the 
computation of one row. However, due to the 
limitation of the maximum number of threads which is 
512 for each block, a problem occurs when the query 
sequence size is longer than the maximum number of 
threads possible. Considering this limitation, 
Munekawa et al. [5] utilize built-in variable char4 [6] 
for each thread to expand the maximum query length 
possible to 2048 (=512*4). Nonetheless, the problem 
remains for longer query sequences. To circumvent the 
maximum number of threads limitation, Manavski et al. 
[4] proposed a different parallelization strategy. In it, 
one single thread is allocated to the computation of the 
entire alignment matrix of a pair of sequences. The 
alignment matrix is calculated serially column by 
column (see in figure 4). Since the computation of each 
column just depends on the previous one, a small 
amount of memory size is needed, dependent on the 
length of query sequence. 



 
 
Fig3. Parallel implementation of the alignment matrix computation for k pairs of sequences - the equally shaded parts stand for anti 
diagonal cells that can be computed in parallel 
 

 
 

Fig4. Parallel implementation of the alignment matrix computation – one single thread computes a complete alignment matrix of 
two sequences. Cells in each matrix are computed column by column using local memory as a buffer for temporary data 
 
Though the computation of cells of each column is 
serial for each thread, massive parallel computation is 
achieved by using multiple parallel threads to calculate 
alignment matrices between a query sequence and 
several subject sequences. In this implementation, 
however, the amount of parallelism is restricted by the 
size of the local memory shared by all parallel threads 
which is used to store and load temporary data 
necessary for the calculation of alignment matrix 
elements. For different number of parallel threads, the 
available local memory allocated for each thread is not 
fixed, which will be decreased if more threads are 
running at the same time. As a result, this method also 
suffers from a limitation in the maximum possible size 
of query length to be processed. In next section, we will 
describe our proposed method for solving this problem. 
 
B. Our Thread Allocation and Reuse Strategy 
 

The parallelization strategy adopted in our design is 
similar to the approach adopted by Munekawa et al. [5] 
as we allocate several threads to compute a single 
alignment matrix. However, in our implementation we 
separate a single alignment matrix computation into 
multiple sub-matrices with a certain number of threads, 
commensurate with the maximum number of threads 

and the possible maximum amount of memory available. 
Once the batch of threads allocated completes a sub-
matrix calculation, the final thread in the batch records 
the data in the row which it takes charge and stores it 
into shared memory or global memory depending on the 
size of database subject sequence, ready for the 
calculation of the next sub-matrix, and the first thread in 
the batch loads this data as initial data for the 
subsequent sub-matrix calculation.  

This operation continues in turn until the end of the 
entire alignment matrix calculation. This process is 
illustrated in Figure 5 as below where the final thread in 
each batch (thread n) stores the cells of its row. 
Afterward, the first thread in the batch loads these 
values as initial data for the computation of the first row 
in the next alignment sub-matrix. It is worth mentioning 
here that all alignment matrix calculations are done 
purely on GPU. The host processor only allocates 
memory on the GPU device and predefines the relevant 
database sequences offset which guarantees that each 
block operates on right section of the database sequence 
before launching the GPU kernel.  

Since each SM can have 768 parallel threads running 
at the same time, we split this amount into batches of 
threads or blocks, where each block computes one 
alignment matrix. For example, we can split the overall 



number of threads into 8 blocks of 96 threads, with 10 
registers allocated to each thread and each block could 
use almost 2 KB of shared memory. Global memory 
will be used if this amount of allocated shared memory 
space is not enough for any database subject sequence. 
Note here that if the length of the database subject 
sequence is smaller than the number of thread in the 
block, additional waiting time should be added for the 
threads in the batch to finish their computations. This is 
easy to imagine e.g. if thread 0 has already completed 
its row calculation, but thread n has not completed yet 
or has not even started its row, then thread 0 of the next 
block would have to wait for thread n of the previous 
block to complete its task before obtaining its initial 
data for the next batch of processing i.e. row n+1. The 
waiting time is proportional to the number of threads 
minus the length of database subject sequence if the 
length of database subject sequence is smaller than the 
maximum thread number, otherwise, it is 0.  

 
C. Load partitioning and speed-up strategy 
 

In our implementation, we use constant cache to store 
the commonly used constant parameters in order to 
decrease access time, including the substitution matrix 
and the query sequence. In addition, we use global 
memory to store the database sequence as the size of the 
latter can be in the hundreds of megabytes. Moreover, 
we use texture cache to shade database sequences. The 
bottleneck of speedup in our implementation is the store 
operation of temporary data by the last thread and the 
load operation by the first thread in each batch, because 
the latency between SP registers and global memory is 
much longer than the one between registers and shared 
memory. No matter how fast other threads execute the 
kernel code, they have to wait for a point where all 
threads synchronize. Obviously, this only occurs when 
the length of the database subject sequence is longer 

than the allocated space in shared memory. Therefore, 
our acceleration strategy mainly focuses on the efficient 
allocation of resources to each block to make the 
maximum use the available parallelism. This can be 
achieved through setting the number of threads in each 
block.  

Since each SM has 8192 registers and can keep at 
most 768 threads running at the same time, for a query 
sequence of length 512, if we use 1 block of 512 threads, 
16 registers can be used for each thread. In this case, 
only one sequence alignment can be computed in each 
SM. If we use 8 blocks of 64 threads, also 16 registers 
can be allocated to each thread, but the number of 
sequence alignments can be processed at the same time 
becomes to 8. Rather than adopting the simple method 
used by Munekawa et al. [5] which utilizes the full 
memory resource for each block, we flexibly allocate 
resources through setting the number of threads in each 
block, with no limitation on the overall length of the 
query sequence. Table 1 presents execution times of the 
Smith-Waterman algorithm on GPU using our 
technique, with different numbers of threads per block. 
For a query sequence of length 1023, 64 threads per 
block lead to the best performance. 
 
Table1. Performance comparison among thread number of  64, 
128 and 256. All query sequences run against the SWISS-
PROT database [12] 
 

Query 
length 

Thread 64 Thread 128 Thread 256 

Time(sec) Time(sec) Time(sec) 

63 2.13 3.1 6.18 
127 6.11 4.16 7.15 
191 9.28 11.94 8.3 
255 12.45 12.93 9.63 
511 25.12 26.35 29.17 
1023 50.4 53.1 57.8 

 
 

 
Fig5. Our thread reuse strategy, store and load operations are performed by the final thread and the first thread in each thread batch 
(block). 
 



In our implementation, we use vector type char2 as 
illustrated in Figure 6 to decrease the data fetch times 
compared to using char. This was empirically found to 
be more efficient than using vector char4.  

 

 
Fig6. Alignment matrix calculation with vector variable 
char2 

 
D. Pseudo Code 
 
Figure 7 shows the pseudo code for the proposed 
kernel. According to the length of query sequence and 
the amount of threads, firstly, we compute the reuse 
rate of threads in line 3, and then compute the 
additional waiting time for the purpose of insuring the 
proper initial data for the computation of the next 
iteration in line 5. Each thread reads the corresponding 
cells on the query sequence in line 7. Note that there is 
a stringent requirement for the computation order 
among threads, which is controlled by the variable key 
in line 12. When key < 0, this indicates that the thread 
still needs to wait (until key = 0). After that, it starts to 
fetch cells in database sequence to perform the 
necessary computations. Since we define vector 
variable blockdb in line 17, the maximum fetch time 
can be decreased from dbfetch to dbfetch/2. When 
key > dbfetch/2, this indicates that the thread has 
already fetched the final cells and there is no need to do 
any extra operations it line 13. In the final iteration, 
some threads may not have any pending tasks, in which 
case they just wait for the synchronization operation in 
line 30. Line 18-20 show the computation of the 
alignment values and the update of the maximum score 
value. After that, new anti diagonals are updated by 
changing the value of variable dia in line 21 and the 
corresponding positions in shared memory in line 22. A 
similar procedure is used in lines 23-27 but with 
different database sequence cells. Note here that we 
adequately use the H value stored in registers for 
computation instead of using shared memory, which 
avoids the risk of data update conflict among threads 
and improve operation speed. Apart from the 
computation duty, the final thread (tid = threadnum-1) 
stores H for the purpose of the next iteration in line 28. 
Note that if fetch>0, thread 0 also needs to load the 
initial data in line 16. Load and store operations are 
added at the beginning and the end of the inner loop. 
Finally, every thread copies the highest score of its 
rows (threadnum* fetch + tid+1) to global memory in 
line 30. The expression in s guarantees that there is no 
conflict in device memory writes. 

 
Fig7. Pseudo code. Each block executes the code with the 
same query sequence and different database sequences; the 
output is the maximum score for each row in each matrix. tid 
and bid represent the ID of each individual thread and block 
respectively. Gap penalty is linear and equal to 2. The 
constant substitution matrix is stored in constant memory. 
 

5. RESULTS AND DISCUSSION 

 
In this section, we present experimental results of 

our Smith-Waterman GPU implementation compared 
to the state-of-the-art. In our implementations, we used 
a Mac Pro desktop computer running Ubuntu 8.10 32-
bit Linux operation system, with an NVIDIA GeForce 
8800 GTX GPU with 768MB device memory, with 
576MHz core clock frequency, and 900MHz memory 
clock frequency. We used NVIDIA SDK 9.5 and 
CUDA 1.1 API for our code development. 

The experiments reported used query sequences of 
lengths ranging from 63 to 511 amino acids. All query 
sequences run against the Swiss-Prot protein sequence 
database [12], which approximately 180MB in size, 
and contains 399,749 sequence entries with a total of 
144041553 amino acids. The execution times reported 
are just for the execution time on GPU.  

The version of the Swiss-Prot database used in Liu et 
al’s OpenGL method [3] is release 46.3, March 2005. It 



contains 176,469 sequence entries, with an average 
length of 361 amino acids. The GPU type used in their 
implementations was an NVIDIA Geforce 7800GTX 
GPU. For the sake of simplicity, they used a simple 
substitution matrix which uses a score of 2 if the 
characters from database sequence and query sequence 
are identical and -1 otherwise. For our implementation, 
the performance was tested using the more biologically 
accurate BLOSUM 50 substitution matrix. Moreover, 
we tested the performance with a simple version 
substitution matrix for the purpose of fair comparison 
with Liu’s method [3], the results of which are shown 
in Table 2. The evaluation of our implementation on 
the Geforce 8800GTX GPU shows a speedup factor 
from 4x to 20x. However, the two implementations 
used GPUs from different generations. In order to 
allow for a fairer comparison, we compared our 
implementation with more recent GPU 
implementations from Munekawa et al. [5] in table 3 
and Manavski et al. [4] in table 4. 
 
Table2.  Performance comparison between Liu’s openGL 
method [3] and our proposed method, both using a simple 
substitution matrix 
 

Query 
length 

Execution time 
T (sec) 

Throughput 
P (MCUPS) 

Proposed Liu’s Proposed Liu’s 

63 2.13 19.5 4059 196 
127 4.16 25 4189 308 
255 9.63 36.3 3634 427 
511 25.12 59.2 2792 524 
1023 50.4 105.1 2786 591 
2047 101.12 197.9 2778 628 
4095 202 383.1 2782 649 

 
Table 3 presents comparative implementation results 

between our implementation and Munekawa et al.’s 
which targeted NVIDIA’s Geforce 8800GTX GPU [5]. 
Here, we can see that for shorter query sequences, our 
implementation performs better, but as query sequence 
length increases, the performance of our 
implementation decreases. This is because of the 
overheads associated with storing and loading 
intermediate data between computation batches when 
the query sequence length is greater than the number of 
threads, as explained in the previous section. 
Nonetheless, we notice that Munekawa et al.’s 
implementation cannot cope with query sequences 
longer than 2048, whereas our implementation can 
cope with any query sequence length. This is a major 
advantage of our method which makes it completely 
useful in real world bioinformatics applications. Note 
that the difference between throughput ratios and 
execution time ratios in Table 3 as due to the use of 
different versions of the Swiss-Prot database i.e. with 
different sizes.  

 
Table3. Performance comparison between Munekawa’s 
method [5] and our proposed method 
 

Query 
length 

Execution time 
T (sec) 

Throughput 
P (MCUPS) 

Proposed Munekawa’s Proposed Munekawa’s 

63 2.13 2.96 4059 1838 
127 4.16 3.38 4189 3244 
191 7.36 3.98 3561 4121 
255 9.63 4.66 3634 4725 
511 25.12 8.19 2792 5388 
4095 202 impossible 2782 impossible 

 
Table 4 presents comparative results with another 

recent GPU implementation of the Smith-Waterman 
algorithm, from Manavski’s et al. targeted at an 
NVIDIA Geforce 8800GTX GPU [4] which was 
explained in detail in section 4.A above. This 
implementation has obvious speed advantages as can 
be seen from Table 4 thanks to the higher amount of 
parallelism allowed by computing several alignment 
matrices in parallel coupled with a simpler 
synchronization mechanism allowed by the fact that 
only one thread is associated to each alignment matrix 
calculation.  Nonetheless, this implementation suffers 
from the local memory size bottleneck which limits the 
size of query sequences to be processed to 2500 
approximately. Our implementation on the other hand 
does not suffer from any such limitation, and can thus 
be fully adopted in a real world bioinformatics 
application. 
 
Table4. Performance comparison between Manavski’s 
method [4] and our proposed method, substitution matrix was 
used. 
 

Query 
length 

Execution time 
T (sec) 

Throughput 
P (MCUPS) 

Proposed Manavski’s Proposed Manavski’s 

63 8 2.98 1080 1849 
127 15.5 5.88 1124 1889 
255 35 12.31 1000 1811 
511 81.8 24.89 857 1795 
4095 633.6 impossible 885 impossible 

 
In addition, we have compared the performance of our 
GPU implementation with a widely used optimised 
CPU implementation of the Smith-Waterman 
algorithm, namely SSEARCH from the FASTA set of 
programs [13]. Table 5 presents comparative results of 
our GPU implementation with an equivalent 
SSEARCH (version 35.04) implementation on a 
Pentium4 3.4GHz desktop computer running Windows 
XP Professional. This shows that our GPU 
implementation outperforms an equivalent CPU 
implementation by up to 15x. 
 



Table5. Performance comparison between SSEARCH and 
our proposed method 
 

Query 
length 

Execution time 
T (sec) 

Throughput 
P (MCUPS) 

Proposed SSEARCH Proposed SSEARCH 

63 8 125 1080 70 
127 15.5 210 1124 83 
255 35 424 1000 83 
361 56.4 536 880 92 
511 81.8 779 857 90 

 

6. CONCLUSIONS AND FUTURE WORK 

 
In this paper we have presented a novel technique 

for the implementation of the Smith-Waterman 
algorithm on CUDA-compatible GPUs. The technique 
solves the query length limitation reported in previous 
GPU implementation of the Smith-Waterman 
algorithm, as it can cope with any query or subject 
sequence sizes. Central to this technique is a divide and 
conquer approach to alignment matrix calculation in 
which the size of sub-matrix calculation is dictated by 
the available computing and memory resources in the 
GPU hardware, with thread reuse across all sub-matrix 
calculations. This however comes at a speed overhead 
due the storing and loading of temporary intermediate 
data in the global memory. Despite this speed penalty, 
our GPU implementation still outperforms an 
optimised CPU-only implementation by up to 15x. 

Future work will harness our divide and conquer 
technique with the single thread per alignment matrix 
parallelising strategy outlined in section 4.B, and 
compare the results with the implementation reported 
in this paper. We also plan to accelerate other 
biological sequence alignment algorithms on GPUs 
including the BLAST algorithm and biological 
sequence analysis using Hidden Markov Models 
(HMMs). 
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