
A Parameterisable and Scalable Smith-Waterman Algorithm
Implementation on CUDA-compatible GPUs
Cheng Ling1, Khaled Benkrid1 and Tsuyoshi Hamada2

1Institute for Integrated Micro and Nano Systems, Joint Research Institute for Integrated Systems,

The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JL, UK
2Faculty of Engineering, Department of Computer and Information Sciences,

Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
1C.Ling@ed.ac.uk, 1K.Benkrid@ed.ac.uk, 2hamada@cis.nagasaki-u.ac.jp

Abstract—This paper describes a multi-threaded parallel
design and implementation of the Smith-Waterman (SM)
algorithm on compute unified device architecture
(CUDA)-compatible graphic processing units (GPUs). A
novel technique has been put forward to solve the
restriction on the length of the query sequence in previous
GPU implementations of the Smith-Waterman algorithm.
The main reasons behind this limitation in previous GPU
implementations were the finite size of local memory and
number of threads per block. Our solution to this
problem uses a divide and conquer approach to compute
the alignment matrix involved in each pairwise sequence
alignment, as it divides the entire matrix computation
into multiple sub-matrices and allocates the available
amount of threads and memory resources to each sub-
matrix iteratively. Intermediate data is stored in shared
and global memory on the fly depending on the length of
sequences in hand. The proposed technique resulted in up
to 4.2 GCUPS (Giga Cell Updates per Second)
performance when tested against the SWISS-PROT
protein database, which is up to 15 times faster than a
equivalent optimised CPU-only implementation running
on a Pentium4 3.4GHz desktop computer. Moreover, our
implementation can cope with any query or subject
sequence size, unlike previously reported GPU
implementations of the Smith-Waterman algorithm
which makes it fully deployable in real world
bioinformatics applications.

1. INTRODUCTION

Biological sequence alignment is a widely used

operation in the field of bioinformatics and
computational biology. It aims to find out whether two
or more biological sequences are related or not.
However, biological sequence alignment is also a
computationally expensive application as its computing
and memory requirements grow quadratically with the
size of the databases. Given that the latter is growing
exponentially year after year, the need for hardware
acceleration is getting stronger [1].

Graphics Processor Units (GPUs) have been
proposed recently as a high performance and relatively
low cost acceleration platform for biological sequence
alignment [2]. Among the early attempts we can cite
Liu’s OpenGL-based implementation of the Smith-
Waterman algorithm, reported in [3]. More recently,
Manavski et al. [4] and Munekawa et al. [5] reported
two different GPU implementations of the Smith-

Waterman algorithm using NVIDIA GPUs [6]. The
former used a single thread to compute a complete
pairwise alignment matrix, column by column serially,
and harnessed many threads to compute the alignment
matrices of different pairs in parallel. The latter
implementation harnessed one batch threads (block) to
compute a single alignment matrix in parallel,
exploiting the fact that the computation of the matrix
cells on each anti diagonal are independent of each
other, and hence can be done in parallel. Both
implementations used the compute unified device
architecture (CUDA) API to program GPUs and
targeted GPUs from NVIDIA [8]. These API functions
have contributed greatly to the use of GPUs in general
purpose computing, opening the way for a new field of
computational study coined general-purpose
computation GPU (or GPGPU) which aims at
harnessing GPUs for a wide range of applications
including scientific computing [7], computational
geometry [8], image processing [9] and bioinformatics
[2].

Compared with CPU-based implementations of the
Smith-Waterman algorithm e.g. from Farrar [10],
Manavski et al. [4] and Munekawa et al. [5]
demonstrated good acceleration performance which
runs from 2 to 30 times faster than any previous
implementations on commodity hardware. However,
both implementations have a serious limitation on the
length of query sequences that their GPU
implementations can cope with. Indeed, Munekawa et
al. [5] is clearly stated that that query sequences should
be shorter than 2048, because of the limitation in the
maximum number of threads that could be defined in
each block. Moreover, Manavski et al. [4] reports a
similar limitation because of the limited size of the
local memory. Such limitation renders these
implementations useless in many real world
applications where query sequences are far longer than
2500 approximately. This paper presents a technique
which overcomes the above limitation of previous
implementations of the Smith-Waterman algorithm.
The main idea behind this is to separate the
computation of the alignment matrix into multiple parts
if the number of threads and size of local memory are
not sufficient, and allocate the available resources to
each sub-matrix in turn.

The remainder of the paper is organized as follows.
First, relevant background on the Smith-Waterman
algorithm is presented. Then, previous work in the area
of GPU-based acceleration of biological sequence
alignment is presented. After that, our novel GPU-
based implementation technique of the Smith-
Waterman algorithm is presented. A comparative
evaluation of our implementation then follows before
conclusions and ideas for future work are laid out.

2. THE SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm [11] is dynamic

programming algorithm which finds the best local
alignment between two sequences. The optimal local
alignment obtained by the algorithm is achieved in two
stages. Firstly, an alignment matrix is calculated based
on the correlation between the two sequence characters
(e.g. protein amino acids, DNA base pairs). The
optimal local alignment is found by finding the
maximum element in the alignment matrix, which
attaches a score to the degree of similarity between the
two sequences, and tracing back the alignment matrix
until a zero element is found.
More specifically, let D denotes a database sequence of
length m:
D: 0 1 2 3 1...... md d d d d −
Let Q denotes a query sequence of length n:
Q: 0 1 2 3 1...... nq q q q q −
Let (,)i jW a b denotes the substitution scoring matrix
which gives a score describing the likelihood of
substitution between characters ai and bj.
Let initG and extG denote penalties for opening a new
gap and continuing an existing gap respectively.
With the above, the alignment matrix computation of
the Smith-Waterman algorithm is described by the
following equations:

1. , , 1 , 1max{ , }i j i j init i j extE H G E G− −= − −
2. , 1, 1,max{ , }i j i j init i j extF H G F G− −= − −
3. , , , 1, 1max{0, , , (,)}i j i j i j i j i jH E F H W a b− −= +

The values of ,i jH , ,i jE and ,i jF are defined as 0 if
1i < or 1j < .The gap penalty is called linear if

initG = extG , otherwise, it is called affine. In our
subsequent GPU implementation, we use a linear gap
model, which means that the above equations can be
summarised as:

4.
, 1 , 1 1, 1max{0, , , , (,)}i j i j i j i j i jH H G H G H W a b− − − −= − − +

From this equation, we observe that the value of ,i jH
depends on the values of its upper neighbour, 1i jH − ,
left neighbour 1,i jH − and left-upper
neighbour 1, 1i jH − − , as shown in figure 1.

Fig1. Data dependency of the Smith-Waterman dynamic
programming algorithm

The above operations are massively parallelisable since
the anti diagonal elements of the alignment matrix are
independent of each other, and hence can be computed
in parallel. In addition, the computation of different
alignment matrices between a query sequence and
several subject sequences can be done in parallel too.
Since GPUs have the ability to allocate thousands of
parallel threads to a particular task, it is a very
appealing acceleration platform for the Smith-
Waterman algorithm. Note finally that the trace back
procedure will be done only for one or few subject
sequences, the one(s) with the highest score, out of
thousands or millions of subject sequences, and hence
it is better achieved on the host CPU. The GPU
parallelisation task is hence focused on the alignment
matrices’ calculation.

3. THE PROGRAMMING MODEL OF CUDA-COMPATIBLE

GPUS

CUDA (Compute Unified Device Architecture) is a

parallel computing architecture developed by NVIDIA
Corporation [6], which makes the computing engines
of graphics processor units accessible to general
purpose software developers through a standard
programming language e.g. C, with an API to exploit
the architecture parallelism. Like many-core CPUs,
CUDA uses threads for parallel execution. However,
whereas multi-core CPUs have only few threads
running in parallel at any particular time, GPUs allow
for thousands of parallel threads to run at the same time.
The GPU used in our implementation is NVIDIA’s
Geforce 8800GTX (see Figure 2) which has 16 Stream
Multiprocessors (SMs), with each SM having eight
Stream Processors (SPs) used as Arithmetic Logic
Units (ALUs) with 8KB constant cache, 8KB texture
cache and 16KB shared memory (see Figure 2). The
shared memory can be read and written by any thread
in a block assigned to a SM. In addition, each SP has
its own registers (1024) and operates the same kernel
code as the other SPs, but with different data sets.
Access speed to shared memory is as fast as accessing
SP registers as long as there are no bank conflicts [6].

H i-1, j-1 H i, j-1

 H i, j,

- G

- G

W(ai, bj))

H i-1, j;

Fig2. Block architecture of NVIDIA’s Geforce 8800 GTX

In addition to the above, a device memory offers global
access to a larger (768 MB) but slower storage. Any
thread in any SP can read from or write to any location
in the global memory. Since computational results can
be transferred back to CPU memory through it, global
memory can be thought as a bridge which achieves
communication between GPU and CPU.

Local memory is allocated automatically if the size
of variable required is bigger than the register size, and
there is no keyword specified for it. It is not cached and
cannot be accessed in a coalesced manner like global
memory. Texture memory within each SM can be filled
with data from the global memory. It acts like a cache,
and so does constant memory, which means that they
can speed up the fetch time of data. However, threads
running in the SMs are restricted to read only access to
these memories. The host CPU, on the other hand, does
have write access to these memories.

4. OUR SMITH-WATERMAN GPU IMPLEMENTATION

Part of our proposed technique for the Smith-

Waterman GPU implementation draws from the
experience of Liu’s parallelization strategy reported in
[3] and the memory distribution scheme of Munekawa
et al. reported in [5]. Before reporting the details of our
novel technique, we first describe the two main
parallelization strategies adopted for the GPU
acceleration of the Smith-Waterman algorithm.
Afterwards, we will illustrate our improved strategy
which solves the problem of query size limitation
reported in previous implementations.

A. Parallelization Strategies

Eqs.4 indicates that the computation of matrix cell
,i jH just depends on the values of its upper

neighbour , 1i jH − , left neighbour 1,i jH − and its left-
upper neighbour 1, 1i jH − − , which means that the
calculation of cells within each anti diagonal of
alignment the matrix can be done in parallel.

Obviously, for the computation of cells on the k-th anti
diagonal, we need to record the cells on (k-1)-th anti
diagonal and the cells on the (k-2)-th anti diagonal. For
a query sequence of length n and a database subject
sequence of length m, there are 1m n+ − anti diagonals
which have to be computed serially. Instead of storing
all matrix cells, we just need to allocate memory for the
storage of two anti diagonals. As illustrated in Figure 3,
the computation of cells in the i-th row (i>1) depends
on both the value stored in shared[i-1] and shared[i].
Moreover, shared[i] will be updated when the new H
value is computed for the computation of the cells in
the i-th row. Therefore, we use a register for each
thread to store the cells on the (k-2)-th anti diagonal
and shared memory space for the cells on the (k-1)-th
anti diagonal. After computing all cells on the k-th anti
diagonal, we use the cells on the (k-1)-th anti diagonal
to update the content of registers and the cells on
current k-th anti diagonal to update the content of
shared memory for the computation of all cells on
(k+1)-th anti diagonal. Another register defined in
kernel for each thread is used to store and update the
highest score of each row. Overall, one block of
threads is responsible for computing one matrix, and
each thread contained in it takes charge of the
computation of one row. However, due to the
limitation of the maximum number of threads which is
512 for each block, a problem occurs when the query
sequence size is longer than the maximum number of
threads possible. Considering this limitation,
Munekawa et al. [5] utilize built-in variable char4 [6]
for each thread to expand the maximum query length
possible to 2048 (=512*4). Nonetheless, the problem
remains for longer query sequences. To circumvent the
maximum number of threads limitation, Manavski et al.
[4] proposed a different parallelization strategy. In it,
one single thread is allocated to the computation of the
entire alignment matrix of a pair of sequences. The
alignment matrix is calculated serially column by
column (see in figure 4). Since the computation of each
column just depends on the previous one, a small
amount of memory size is needed, dependent on the
length of query sequence.

Fig3. Parallel implementation of the alignment matrix computation for k pairs of sequences - the equally shaded parts stand for anti
diagonal cells that can be computed in parallel

Fig4. Parallel implementation of the alignment matrix computation – one single thread computes a complete alignment matrix of
two sequences. Cells in each matrix are computed column by column using local memory as a buffer for temporary data

Though the computation of cells of each column is
serial for each thread, massive parallel computation is
achieved by using multiple parallel threads to calculate
alignment matrices between a query sequence and
several subject sequences. In this implementation,
however, the amount of parallelism is restricted by the
size of the local memory shared by all parallel threads
which is used to store and load temporary data
necessary for the calculation of alignment matrix
elements. For different number of parallel threads, the
available local memory allocated for each thread is not
fixed, which will be decreased if more threads are
running at the same time. As a result, this method also
suffers from a limitation in the maximum possible size
of query length to be processed. In next section, we will
describe our proposed method for solving this problem.

B. Our Thread Allocation and Reuse Strategy

The parallelization strategy adopted in our design is
similar to the approach adopted by Munekawa et al. [5]
as we allocate several threads to compute a single
alignment matrix. However, in our implementation we
separate a single alignment matrix computation into
multiple sub-matrices with a certain number of threads,
commensurate with the maximum number of threads

and the possible maximum amount of memory available.
Once the batch of threads allocated completes a sub-
matrix calculation, the final thread in the batch records
the data in the row which it takes charge and stores it
into shared memory or global memory depending on the
size of database subject sequence, ready for the
calculation of the next sub-matrix, and the first thread in
the batch loads this data as initial data for the
subsequent sub-matrix calculation.

This operation continues in turn until the end of the
entire alignment matrix calculation. This process is
illustrated in Figure 5 as below where the final thread in
each batch (thread n) stores the cells of its row.
Afterward, the first thread in the batch loads these
values as initial data for the computation of the first row
in the next alignment sub-matrix. It is worth mentioning
here that all alignment matrix calculations are done
purely on GPU. The host processor only allocates
memory on the GPU device and predefines the relevant
database sequences offset which guarantees that each
block operates on right section of the database sequence
before launching the GPU kernel.

Since each SM can have 768 parallel threads running
at the same time, we split this amount into batches of
threads or blocks, where each block computes one
alignment matrix. For example, we can split the overall

number of threads into 8 blocks of 96 threads, with 10
registers allocated to each thread and each block could
use almost 2 KB of shared memory. Global memory
will be used if this amount of allocated shared memory
space is not enough for any database subject sequence.
Note here that if the length of the database subject
sequence is smaller than the number of thread in the
block, additional waiting time should be added for the
threads in the batch to finish their computations. This is
easy to imagine e.g. if thread 0 has already completed
its row calculation, but thread n has not completed yet
or has not even started its row, then thread 0 of the next
block would have to wait for thread n of the previous
block to complete its task before obtaining its initial
data for the next batch of processing i.e. row n+1. The
waiting time is proportional to the number of threads
minus the length of database subject sequence if the
length of database subject sequence is smaller than the
maximum thread number, otherwise, it is 0.

C. Load partitioning and speed-up strategy

In our implementation, we use constant cache to store
the commonly used constant parameters in order to
decrease access time, including the substitution matrix
and the query sequence. In addition, we use global
memory to store the database sequence as the size of the
latter can be in the hundreds of megabytes. Moreover,
we use texture cache to shade database sequences. The
bottleneck of speedup in our implementation is the store
operation of temporary data by the last thread and the
load operation by the first thread in each batch, because
the latency between SP registers and global memory is
much longer than the one between registers and shared
memory. No matter how fast other threads execute the
kernel code, they have to wait for a point where all
threads synchronize. Obviously, this only occurs when
the length of the database subject sequence is longer

than the allocated space in shared memory. Therefore,
our acceleration strategy mainly focuses on the efficient
allocation of resources to each block to make the
maximum use the available parallelism. This can be
achieved through setting the number of threads in each
block.

Since each SM has 8192 registers and can keep at
most 768 threads running at the same time, for a query
sequence of length 512, if we use 1 block of 512 threads,
16 registers can be used for each thread. In this case,
only one sequence alignment can be computed in each
SM. If we use 8 blocks of 64 threads, also 16 registers
can be allocated to each thread, but the number of
sequence alignments can be processed at the same time
becomes to 8. Rather than adopting the simple method
used by Munekawa et al. [5] which utilizes the full
memory resource for each block, we flexibly allocate
resources through setting the number of threads in each
block, with no limitation on the overall length of the
query sequence. Table 1 presents execution times of the
Smith-Waterman algorithm on GPU using our
technique, with different numbers of threads per block.
For a query sequence of length 1023, 64 threads per
block lead to the best performance.

Table1. Performance comparison among thread number of 64,
128 and 256. All query sequences run against the SWISS-
PROT database [12]

Query
length

Thread 64 Thread 128 Thread 256

Time(sec) Time(sec) Time(sec)

63 2.13 3.1 6.18
127 6.11 4.16 7.15
191 9.28 11.94 8.3
255 12.45 12.93 9.63
511 25.12 26.35 29.17
1023 50.4 53.1 57.8

Fig5. Our thread reuse strategy, store and load operations are performed by the final thread and the first thread in each thread batch
(block).

In our implementation, we use vector type char2 as
illustrated in Figure 6 to decrease the data fetch times
compared to using char. This was empirically found to
be more efficient than using vector char4.

Fig6. Alignment matrix calculation with vector variable
char2

D. Pseudo Code

Figure 7 shows the pseudo code for the proposed
kernel. According to the length of query sequence and
the amount of threads, firstly, we compute the reuse
rate of threads in line 3, and then compute the
additional waiting time for the purpose of insuring the
proper initial data for the computation of the next
iteration in line 5. Each thread reads the corresponding
cells on the query sequence in line 7. Note that there is
a stringent requirement for the computation order
among threads, which is controlled by the variable key
in line 12. When key < 0, this indicates that the thread
still needs to wait (until key = 0). After that, it starts to
fetch cells in database sequence to perform the
necessary computations. Since we define vector
variable blockdb in line 17, the maximum fetch time
can be decreased from dbfetch to dbfetch/2. When
key > dbfetch/2, this indicates that the thread has
already fetched the final cells and there is no need to do
any extra operations it line 13. In the final iteration,
some threads may not have any pending tasks, in which
case they just wait for the synchronization operation in
line 30. Line 18-20 show the computation of the
alignment values and the update of the maximum score
value. After that, new anti diagonals are updated by
changing the value of variable dia in line 21 and the
corresponding positions in shared memory in line 22. A
similar procedure is used in lines 23-27 but with
different database sequence cells. Note here that we
adequately use the H value stored in registers for
computation instead of using shared memory, which
avoids the risk of data update conflict among threads
and improve operation speed. Apart from the
computation duty, the final thread (tid = threadnum-1)
stores H for the purpose of the next iteration in line 28.
Note that if fetch>0, thread 0 also needs to load the
initial data in line 16. Load and store operations are
added at the beginning and the end of the inner loop.
Finally, every thread copies the highest score of its
rows (threadnum* fetch + tid+1) to global memory in
line 30. The expression in s guarantees that there is no
conflict in device memory writes.

Fig7. Pseudo code. Each block executes the code with the
same query sequence and different database sequences; the
output is the maximum score for each row in each matrix. tid
and bid represent the ID of each individual thread and block
respectively. Gap penalty is linear and equal to 2. The
constant substitution matrix is stored in constant memory.

5. RESULTS AND DISCUSSION

In this section, we present experimental results of

our Smith-Waterman GPU implementation compared
to the state-of-the-art. In our implementations, we used
a Mac Pro desktop computer running Ubuntu 8.10 32-
bit Linux operation system, with an NVIDIA GeForce
8800 GTX GPU with 768MB device memory, with
576MHz core clock frequency, and 900MHz memory
clock frequency. We used NVIDIA SDK 9.5 and
CUDA 1.1 API for our code development.

The experiments reported used query sequences of
lengths ranging from 63 to 511 amino acids. All query
sequences run against the Swiss-Prot protein sequence
database [12], which approximately 180MB in size,
and contains 399,749 sequence entries with a total of
144041553 amino acids. The execution times reported
are just for the execution time on GPU.

The version of the Swiss-Prot database used in Liu et
al’s OpenGL method [3] is release 46.3, March 2005. It

contains 176,469 sequence entries, with an average
length of 361 amino acids. The GPU type used in their
implementations was an NVIDIA Geforce 7800GTX
GPU. For the sake of simplicity, they used a simple
substitution matrix which uses a score of 2 if the
characters from database sequence and query sequence
are identical and -1 otherwise. For our implementation,
the performance was tested using the more biologically
accurate BLOSUM 50 substitution matrix. Moreover,
we tested the performance with a simple version
substitution matrix for the purpose of fair comparison
with Liu’s method [3], the results of which are shown
in Table 2. The evaluation of our implementation on
the Geforce 8800GTX GPU shows a speedup factor
from 4x to 20x. However, the two implementations
used GPUs from different generations. In order to
allow for a fairer comparison, we compared our
implementation with more recent GPU
implementations from Munekawa et al. [5] in table 3
and Manavski et al. [4] in table 4.

Table2. Performance comparison between Liu’s openGL
method [3] and our proposed method, both using a simple
substitution matrix

Query
length

Execution time
T (sec)

Throughput
P (MCUPS)

Proposed Liu’s Proposed Liu’s

63 2.13 19.5 4059 196
127 4.16 25 4189 308
255 9.63 36.3 3634 427
511 25.12 59.2 2792 524
1023 50.4 105.1 2786 591
2047 101.12 197.9 2778 628
4095 202 383.1 2782 649

Table 3 presents comparative implementation results

between our implementation and Munekawa et al.’s
which targeted NVIDIA’s Geforce 8800GTX GPU [5].
Here, we can see that for shorter query sequences, our
implementation performs better, but as query sequence
length increases, the performance of our
implementation decreases. This is because of the
overheads associated with storing and loading
intermediate data between computation batches when
the query sequence length is greater than the number of
threads, as explained in the previous section.
Nonetheless, we notice that Munekawa et al.’s
implementation cannot cope with query sequences
longer than 2048, whereas our implementation can
cope with any query sequence length. This is a major
advantage of our method which makes it completely
useful in real world bioinformatics applications. Note
that the difference between throughput ratios and
execution time ratios in Table 3 as due to the use of
different versions of the Swiss-Prot database i.e. with
different sizes.

Table3. Performance comparison between Munekawa’s
method [5] and our proposed method

Query
length

Execution time
T (sec)

Throughput
P (MCUPS)

Proposed Munekawa’s Proposed Munekawa’s

63 2.13 2.96 4059 1838
127 4.16 3.38 4189 3244
191 7.36 3.98 3561 4121
255 9.63 4.66 3634 4725
511 25.12 8.19 2792 5388
4095 202 impossible 2782 impossible

Table 4 presents comparative results with another

recent GPU implementation of the Smith-Waterman
algorithm, from Manavski’s et al. targeted at an
NVIDIA Geforce 8800GTX GPU [4] which was
explained in detail in section 4.A above. This
implementation has obvious speed advantages as can
be seen from Table 4 thanks to the higher amount of
parallelism allowed by computing several alignment
matrices in parallel coupled with a simpler
synchronization mechanism allowed by the fact that
only one thread is associated to each alignment matrix
calculation. Nonetheless, this implementation suffers
from the local memory size bottleneck which limits the
size of query sequences to be processed to 2500
approximately. Our implementation on the other hand
does not suffer from any such limitation, and can thus
be fully adopted in a real world bioinformatics
application.

Table4. Performance comparison between Manavski’s
method [4] and our proposed method, substitution matrix was
used.

Query
length

Execution time
T (sec)

Throughput
P (MCUPS)

Proposed Manavski’s Proposed Manavski’s

63 8 2.98 1080 1849
127 15.5 5.88 1124 1889
255 35 12.31 1000 1811
511 81.8 24.89 857 1795
4095 633.6 impossible 885 impossible

In addition, we have compared the performance of our
GPU implementation with a widely used optimised
CPU implementation of the Smith-Waterman
algorithm, namely SSEARCH from the FASTA set of
programs [13]. Table 5 presents comparative results of
our GPU implementation with an equivalent
SSEARCH (version 35.04) implementation on a
Pentium4 3.4GHz desktop computer running Windows
XP Professional. This shows that our GPU
implementation outperforms an equivalent CPU
implementation by up to 15x.

Table5. Performance comparison between SSEARCH and
our proposed method

Query
length

Execution time
T (sec)

Throughput
P (MCUPS)

Proposed SSEARCH Proposed SSEARCH

63 8 125 1080 70
127 15.5 210 1124 83
255 35 424 1000 83
361 56.4 536 880 92
511 81.8 779 857 90

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel technique

for the implementation of the Smith-Waterman
algorithm on CUDA-compatible GPUs. The technique
solves the query length limitation reported in previous
GPU implementation of the Smith-Waterman
algorithm, as it can cope with any query or subject
sequence sizes. Central to this technique is a divide and
conquer approach to alignment matrix calculation in
which the size of sub-matrix calculation is dictated by
the available computing and memory resources in the
GPU hardware, with thread reuse across all sub-matrix
calculations. This however comes at a speed overhead
due the storing and loading of temporary intermediate
data in the global memory. Despite this speed penalty,
our GPU implementation still outperforms an
optimised CPU-only implementation by up to 15x.

Future work will harness our divide and conquer
technique with the single thread per alignment matrix
parallelising strategy outlined in section 4.B, and
compare the results with the implementation reported
in this paper. We also plan to accelerate other
biological sequence alignment algorithms on GPUs
including the BLAST algorithm and biological
sequence analysis using Hidden Markov Models
(HMMs).

REFERENCES

[1] R. Durbin, S. Eddy, A. Krogh and G. Mitchison.

“Biological Sequnce Analysis: Probabilistic Models for
Proteins and Nucleic Acids”. Cambridge University Press,
Cambridge University UK, 1998.

[2] M. Charalambous, P, Transcoso and A. Stamatakis.
“Intial experiences porting a bioinformatics application to
a graphics processor”. In Processings of 10th Panhellenic
Conference on Informatics, 2005.

[3] W. Liu, B. Schmidt, G. Voss, A. Schroder and W. Muller-
Wittig. “Bio-Sequence Database Scanning on GPU”. In
proceeding of 20th IEEE International parallel &
distributed processing symposium: 2006 (IPDSP 2006)
HICOMB workshop Rhode Island, Greece. 2006.

[4] S. A. Manavski and G. Valle. “CUDA compatible GPU
cards as efficient hardware accelerators for Smith-
Waterman sequence alignment”. BMC Bioinformatics
2008, 9(Suppl 2):S10. 2008-3-26

[5] Y. Munekawa, F. Ino and K. Hagihara. “Design and
Implementation of the Smith-Waterman Algorithm on the

CUDA-Compatible GPU”. ISBN: 978-1-4244-2844-1.
2008-12-08

[6] nVIDIA Corporation. “CUDA Programming Guide
Version 1.1”, http://developer.nvidia.com/cuda/

[7] K. J and W. R. “Linear algebra operators for gpu
implementation of numerical algorithm”. ACM Trans.
Graph, 22:908-916, 2003

[8] P. Agarwal, S. Krishnan, N. Mustafa and S. Venkata-
subramanian. “Streaming geometric optimization using
graphics hardware”. In Proc. 11th European Symposium
on Algorithms, 2003.

[9] F. Xu and K. Muller. “Ultra-fast 3d filtered back-
projection on commodity graphics hardware”. In IEEE
International Symposium on Biomedical Imaging’04,
2004.

[10] M. Farrar. “Striped Smith-Waterman speeds database
searches six times over other SIMD implementations”.
Bioinformatics, vol. 23, no. 2, pp. 156–161, Jan. 2007.

[11] T. F. Smith and M. S. Waterman. “Identification of
common molecular subsequences”. J. Molecular Biology,
vol. 147, pp. 195–197, 1981.

[12] A. Bairoch, R. Apweiler. “The SWISS-PROT protein
knowledgebase and its supplement TrEMBL”. Nucleic
Acid Research, release 56.3, 14-Oct-08

[13] W. R. Pearson and D.J. Lipman. “Improved tools for
biological sequences comparison”. Proc Natl Acad Sci
USA 1988, 85:2444-2448

